WebSafe 3.7doi.org
|
|
🏠
Skip to main content
Log in

Safety and Efficacy of Monoamine Oxidase Inhibitors in Patients Who Use Psychoactive Substances: Potential Drug Interactions and Substance Use Disorder Treatment Data

  • Review Article
  • Published:
View saved research
CNS Drugs Aims and scope Submit manuscript

Abstract

Monoamine oxidase inhibitors (MAOIs) remain an important option for patients with treatment-resistant depression (TRD) and other psychiatric conditions, despite potentially serious drug–drug interactions and associated dietary tyramine restrictions. However, they are rarely prescribed in patients with comorbid substance use disorders (SUDs) due to concerns about potential drug interactions and limited research in these populations. This narrative review investigates the use of MAOIs in patients who use psychoactive substances, exploring potential interactions while summarizing the relatively scant literature on using MAOIs as treatments for SUDs. It synthesizes data from 219 peer-reviewed publications investigating MAOI/psychoactive substance interactions or the use of MAOIs to treat SUDs or psychiatric conditions in patients with comorbid SUDs, including 20 randomized controlled trials, 18 non-randomized interventional trials, 32 observational studies/case series, 56 case reports, 85 preclinical studies, and 8 reviews, with publication years spanning from 1955 to 2025. Data from 28 non-peer-reviewed user-submitted reports from drug use/harm reduction forums are also included. Suspected cases of serotonin toxicity have been reported for MAOIs in combination with amphetamine, dextromethorphan, 3,4-methylenedioxymethamphetamine (MDMA), meperidine (pethidine), methadone, and tramadol. Hypertensive urgency/emergency has been reported for MAOIs in combination with alcohol (varieties containing significant amounts of tyramine), amphetamine, cocaine, dextroamphetamine, khat, methamphetamine, and psilocybin mushrooms. Other notable adverse events associated with MAOIs in combination with psychoactive substances include agitation (4-bromo-2,5-dimethoxyphenethylamine [2C-B] 5-methoxy-N,N-dimethyltryptamine [5-Meo-DMT]), N,N-dimethyltryptamine [DMT]), delirium/confusion (DMT, propoxyphene, and tramadol), edema (chlordiazepoxide), intracranial hemorrhage (amphetamine, khat, and methamphetamine), mania/psychosis (DMT), rhabdomyolysis (5-MeO-DMT, DMT, and propoxyphene), and sedation/stupor/loss of consciousness (amobarbital, amphetamine, cocaine, dextroamphetamine, and propoxyphene). Fatalities have been reported for MAOIs in combination with 5-MeO-DMT, amphetamine, dextroamphetamine, dextromethorphan (in overdose), MDMA, methamphetamine, meperidine, and tramadol (in overdose). Based on our findings, some substances, such as alcoholic beverages containing significant tyramine quantities (uncommon today), amphetamines, opioids with significant serotonergic reuptake inhibition, and some hallucinogens such as the empathogen/entactogen MDMA, can pose potentially fatal risks in combination with MAOIs. However, MAOI treatment of patients who use alcoholic beverages low in tyramine, caffeine, cannabis, nicotine, sedatives, some (primarily classic) hallucinogens, and some other substances can likely be appropriately managed with careful monitoring, although psychoactive substance dose and route of administration are important safety considerations. While there was initially hope MAOIs might effectively treat some SUDs, there are no robust human data to support their efficacy in this context. Given growing levels of substance use and an increasing number of novel illicit compounds being produced, more research on MAOI safety in patients with psychiatric conditions and comorbid psychoactive substance use/misuse is essential to determining their appropriateness in this complex patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amsterdam JD, Shults J. MAOI efficacy and safety in advanced stage treatment-resistant depression—a retrospective study. J Affect Disord. 2005;89(1–3):183–8.

    Article  PubMed  CAS  Google Scholar 

  2. Guaiana G, Meader N, Barbui C, Davies SJ, Furukawa TA, Imai H, et al. Pharmacological treatments in panic disorder in adults: a network meta‐analysis. Cochrane Database Syst Rev. 2023;(11).

  3. Tyrer P, Shawcross C. Monoamine oxidase inhibitors in anxiety disorders. J Psychiatr Res. 1988;22:87–98.

    Article  PubMed  Google Scholar 

  4. Blanco C, Heimberg RG, Schneier FR, Fresco DM, Chen H, Turk CL, et al. A placebo-controlled trial of phenelzine, cognitive behavioral group therapy, and their combination for social anxiety disorder. Arch Gen Psychiatry. 2010;67(3):286–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Krishnan KR. Revisiting monoamine oxidase inhibitors. J Clin Psychiatry. 2007;68(Suppl 8):35–41.

    PubMed  CAS  Google Scholar 

  6. Bodkin JA, Dunlop BW. Moving on with monoamine oxidase inhibitors. Focus. 2021;19(1):50–2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dunkley EJC, Isbister GK, Sibbritt D, Dawson AH, Whyte IM. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM. 2003;96(9):635–42.

    Article  PubMed  CAS  Google Scholar 

  8. Van den Eynde V, Gillman PK, Blackwell BB. The prescriber’s guide to the MAOI diet-thinking through tyramine troubles. Psychopharmacol Bull. 2022;52(2):73–116.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chamberlain SR, Baldwin DS. Monoamine oxidase inhibitors (MAOIs) in psychiatric practice: how to use them safely and effectively. CNS Drugs. 2021;35(7):703–16.

    Article  PubMed  CAS  Google Scholar 

  10. Gillman PK. Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol. 2011;31(1):66–74.

    Article  PubMed  CAS  Google Scholar 

  11. Van den Eynde V, Abdelmoemin WR, Abraham MM, Amsterdam JD, Anderson IM, Andrade C, et al. The prescriber’s guide to classic MAO inhibitors (phenelzine, tranylcypromine, isocarboxazid) for treatment-resistant depression. CNS Spectr. 2023;28(4):427–40.

    Article  PubMed  Google Scholar 

  12. Hunt GE, Malhi GS, Lai HMX, Cleary M. Prevalence of comorbid substance use in major depressive disorder in community and clinical settings, 1990–2019: systematic review and meta-analysis. J Affect Disord. 2020;266:288–304.

    Article  PubMed  Google Scholar 

  13. Brenner P, Brandt L, Li G, DiBernardo A, Bodén R, Reutfors J. Treatment-resistant depression as risk factor for substance use disorders—a nation-wide register-based cohort study. Addiction. 2019;114(7):1274–82.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brenner P, Brandt L, Li G, DiBernardo A, Bodén R, Reutfors J. Substance use disorders and risk for treatment resistant depression: a population-based, nested case-control study. Addiction. 2020;115(4):768–77.

    Article  PubMed  Google Scholar 

  15. Tolliver BK, Anton RF. Assessment and treatment of mood disorders in the context of substance abuse. Dialogues Clin Neurosci. 2015;17(2):181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Foulds JA, Adamson SJ, Boden JM, Williman JA, Mulder RT. Depression in patients with alcohol use disorders: systematic review and meta-analysis of outcomes for independent and substance-induced disorders. J Affect Disord. 2015;185:47–59.

    Article  PubMed  Google Scholar 

  17. Shulman KI, Fischer HD, Herrmann N, Huo CY, Anderson GM, Rochon PA. Current prescription patterns and safety profile of irreversible monoamine oxidase inhibitors: a population-based cohort study of older adults. J Clin Psychiatry. 2009;70(12):1681–6.

    Article  PubMed  Google Scholar 

  18. Darke S, Ross J. The use of antidepressants among injecting drug users in Sydney, Australia. Addiction. 2000;95(3):407–17.

    Article  PubMed  CAS  Google Scholar 

  19. Torrens M, Tirado-Muñoz J, Fonseca F, Farré M, González-Pinto A, Arrojo M, et al. Clinical practice guideline on pharmacological and psychological management of adult patients with depression and a comorbid substance use disorder. Adicciones. 2022;34(2):128–41.

    Article  PubMed  Google Scholar 

  20. Kern DM, Canuso CM, Daly E, Johnson JC, Fu DJ, Doherty T, et al. Suicide-specific mortality among patients with treatment-resistant major depressive disorder, major depressive disorder with prior suicidal ideation or suicide attempts, or major depressive disorder alone. Brain Behav. 2023;13(8):e3171.

    Article  PubMed  PubMed Central  Google Scholar 

  21. George TP, Kosten TA, Kosten TR. The potential of dopamine agonists in drug addiction. Expert Opin Investig Drugs. 2002;11(4):491–9.

    Article  PubMed  Google Scholar 

  22. Botting R, Bower S, Eason C, Hutson P, Wells L. Modification by monoamine oxidase inhibitors of the analgesic, hypothermic and toxic actions of morphine and pethidine in mice. J Pharm Pharmacol. 1978;30(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  23. Mackenzie J, Frank L. Influence of pretreatment with a monoamine oxidase inhibitor (phenelzine) on the effects of buprenorphine and pethidine in the conscious rabbit. Br J Anaesth. 1988;60(2):216–21.

    Article  PubMed  CAS  Google Scholar 

  24. Villégier A-S, Gallager B, Heston J, Belluzzi JD, Leslie FM. Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats. Psychopharmacology. 2010;208(4):593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berlin I, Aubin HJ, Pedarriosse AM, Rames A, Investigators LiSCS, Lancrenon S, et al. Lazabemide, a selective, reversible monoamine oxidase B inhibitor, as an aid to smoking cessation. Addiction. 2002;97(10):1347–54.

  26. Chiew AL, Buckley NA. The serotonin toxidrome: shortfalls of current diagnostic criteria for related syndromes. Clin Toxicol (Phila). 2022;60(2):143–58.

    Article  PubMed  CAS  Google Scholar 

  27. Shillinglaw JE, Morrisett RA, Mangieri RA. Ethanol modulates glutamatergic transmission and NMDAR-mediated synaptic plasticity in the agranular insular cortex. Front Pharmacol. 2018;9:1458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Davies M. The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci. 2003;28(4):263–74.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Macaluso M, Preskorn SH. Antidepressants: from biogenic amines to new mechanisms of action. Berlin: Springer International Publishing; 2019.

    Book  Google Scholar 

  30. Atkinson RM, Ditman KS. Tranylcypromine: a review. Clin Pharmacol Ther. 1965;6(5):631–55.

    Article  PubMed  CAS  Google Scholar 

  31. Domino EF, Selden EM. Red wine and reactions. J Clin Psychopharmacol. 1984;4(3):173.

    Article  PubMed  CAS  Google Scholar 

  32. Nunes EV, McGrath PJ, Quitkin FM. Treating anxiety in patients with alcoholism. J Clin Psychiatry. 1995;56:3–9.

    PubMed  Google Scholar 

  33. Baker GB, Wong JT, Yeung JM, Coutts RT. Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA). J Affect Disord. 1991;21(3):207–11.

    Article  PubMed  CAS  Google Scholar 

  34. Perpetuini G, Tittarelli F, Battistelli N, Arfelli G, Suzzi G, Tofalo R. Biogenic amines in global beverages. In: Saad B, Tofalo R, editors. Biogenic amines in food: analysis, occurrence and toxicity. Cambridge: Royal Society of Chemistry; 2019. p. 133–56.

  35. VanDenBerg CM, Blob LF, Kemper EM, Azzaro AJ. Tyramine pharmacokinetics and reduced bioavailability with food. J Clin Pharmacol. 2003;43(6):604–9.

    Article  PubMed  CAS  Google Scholar 

  36. Nalazek-Rudnicka K, Wojnowski W, Wasik A. Occurrence and levels of biogenic amines in beers produced by different methods. Foods. 2021;10(12):2902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Loret S, Deloyer P, Dandrifosse G. Levels of biogenic amines as a measure of the quality of the beer fermentation process: data from Belgian samples. Food Chem. 2005;89(4):519–25.

    Article  CAS  Google Scholar 

  38. Koller H, Perkins LB. Brewing and the chemical composition of amine-containing compounds in beer: a review. Foods. 2022;11(3):257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rodríguez-Saavedra M, de Llano DG, Moreno-Arribas MV. Beer spoilage lactic acid bacteria from craft brewery microbiota: microbiological quality and food safety. Food Res Int. 2020;138:109762.

    Article  PubMed  Google Scholar 

  40. Benack RT, Lynch V. Jaundice associated with isocarboxazid therapy. N Engl J Med. 1961;264(6):294–5.

    Article  Google Scholar 

  41. Gomez-Gil E, Salmeron JM, Mas A. Phenelzine-induced fulminant hepatic failure. Ann Intern Med. 1996;124(7):692–3.

    Article  PubMed  CAS  Google Scholar 

  42. Zimmerman H, Ishak K. The hepatic injury of monoamine oxidase inhibitors. J Clin Psychopharmacol. 1987;7(4):211–3.

    PubMed  CAS  Google Scholar 

  43. Kopanoff DE, Snider DE Jr, Caras GJ. Isoniazid-related hepatitis: a US public health service cooperative surveillance study. Am Rev Respir Dis. 1978;117(6):991–1001.

    PubMed  CAS  Google Scholar 

  44. Zimmerman HJ. Effects of alcohol on other hepatotoxins. Alcohol Clin Exp Res. 1986;10(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  45. Fernández-Villar A, Sopeña B, Vázquez R, Ulloa F, Fluiters E, Mosteiro M, et al. Isoniazid hepatotoxicity among drug users: the role of hepatitis C. Clin Infect Dis. 2003;36(3):293–8.

    Article  PubMed  Google Scholar 

  46. Duncan JW, Zhang X, Wang N, Johnson S, Harris S, Udemgba C, et al. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: examining the use of MAO inhibitors to prevent ethanol-induced brain injury. Neuropharmacology. 2016;105:329–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jamal M, Ito A, Miki T, Suzuki S, Ohta K-I, Kinoshita H. Ethanol concentration induces production of 3, 4-dihydroxyphenylacetic acid and homovanillic acid in mouse brain through activation of monoamine oxidase pathway. Neurosci Lett. 2022;782:136689.

    Article  PubMed  CAS  Google Scholar 

  48. Sherman M, Hauser GC, Glover BH. Toxic reactions to tranylcypromine. Am J Psychiatry. 1964;120(10):1019–21.

    Article  PubMed  CAS  Google Scholar 

  49. De Villiers J. Intracranial haemorrhage in patients treated with monoamineoxidase inhibitors. Br J Psychiatry. 1966;112(483):109–18.

    Article  PubMed  CAS  Google Scholar 

  50. Mirchandani H, Reich L. Fatal malignant hyperthermia as a result of ingestion of tranylcypromine (Parnate®) combined with white wine and cheese. J Forensic Sci. 1985;30(1):217–20.

    Article  PubMed  CAS  Google Scholar 

  51. Chappell A. Severe hypothermia due to combination of psychotropic drugs and alcohol. BMJ. 1966;1(5483):356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rabkin JG, Quitkin FM, McGrath P, Harrison W, Tricamo E. Adverse reactions to monoamine oxidase inhibitors. Part II. Treatment correlates and clinical management. J Clin Psychopharmacol. 1985;5(1):2–9.

    Article  PubMed  CAS  Google Scholar 

  53. Lippman SB, Nash K. Monoamine oxidase inhibitor update: potential adverse food and drug interactions. Drug Saf. 1990;5(3):195–204.

    Article  PubMed  CAS  Google Scholar 

  54. Brown C, Taniguchi G, Yip K. The monoamine oxidase inhibitor—tyramine interaction. J Clin Pharmacol. 1989;29(6):529–32.

    Article  PubMed  CAS  Google Scholar 

  55. Reid WH. Discussion of “fatal malignant hyperthermia as a result of ingestion of tranylcypromine (Parnate) combined with white wine and cheese.” J Forensic Sci. 1986;31(1):8–10.

    PubMed  CAS  Google Scholar 

  56. Emsam (selegiline transdermal system) [package insert]. Morgantown: Somerset Pharmaceuticals Inc; 2014.

  57. Berlin I, Cournot A, Zimmer R, Pedarriosse A-M, Manfredi R, Molinier P, et al. Evaluation and comparison of the interaction between alcohol and moclobemide or clomipramine in healthy subjects. Psychopharmacology. 1990;100(1):40–5.

    Article  PubMed  CAS  Google Scholar 

  58. Zimmer R, Gieschke R, Fischbach R, Basic S. Interaction studies with moclobemide. Acta Psychiatr Scand. 1990;82(S360):84–6.

    Article  Google Scholar 

  59. Dingemanse J, Wood N, Guentert T, Oie S, Ouwerkerk M, Amrein R. Clinical pharmacology of moclobemide during chronic administration of high doses to healthy subjects. Psychopharmacology. 1998;140(2):164–72.

    Article  PubMed  CAS  Google Scholar 

  60. Robinson DS, Amsterdam JD. The selegiline transdermal system in major depressive disorder: a systematic review of safety and tolerability. J Affect Disord. 2008;105(1–3):15–23.

    Article  PubMed  CAS  Google Scholar 

  61. Travis JC. Use of iproniazid in treatment of alcoholics. JAMA. 1960;172(9):909–12.

    Article  CAS  Google Scholar 

  62. Kissin B, Charnoff SM. Clinical evaluation of tranquilizers and antidepressant drugs in long term treatment of chronic alcoholism. In: Fox R, editor. Alcoholism, behavioral research, therapeutic approaches. New York: Springer Publishing Co.; 1967. p. 234–42.

  63. Gorelick DA. Cannabis-related disorders and toxic effects. N Engl J Med. 2023;389(24):2267–75.

    Article  PubMed  CAS  Google Scholar 

  64. Dume R, Lammers E. Demystifying cannabis: a review of its pharmacology, use in pain, and safety concerns. Orthop Nurs. 2020;39(4):264–7.

    Article  PubMed  Google Scholar 

  65. Franklin JM, Carrasco GA. Cannabinoid receptor agonists upregulate and enhance serotonin 2A (5-HT(2A)) receptor activity via ERK1/2 signaling. Synapse. 2013;67(3):145–59.

    Article  PubMed  CAS  Google Scholar 

  66. Velenovská M, Fišar Z. Preclinical study: effect of cannabinoids on platelet serotonin uptake. Addict Biol. 2007;12(2):158–66.

    Article  PubMed  Google Scholar 

  67. Sofia RD, Ertel RJ, Dixit BN, Barry IIIH. The effect of Δ1-tetrahydrocannabinol on the uptake of serotonin by rat brain homogenates. Eur J Pharmacol. 1971;16(2):257–9.

    Article  PubMed  CAS  Google Scholar 

  68. Banerjee SP, Snyder SH, Mechoulam R. Cannabinoids: influence on neurotransmitter uptake in rat brain synaptosomes. J Pharmacol Exp Ther. 1975;194(1):74–81.

    Article  PubMed  CAS  Google Scholar 

  69. Vitale RM, Iannotti FA, Amodeo P. The (poly) pharmacology of cannabidiol in neurological and neuropsychiatric disorders: molecular mechanisms and targets. Int J Mol Sci. 2021;22(9):4876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30:1037–43.

    Article  PubMed  CAS  Google Scholar 

  71. Hill MN, Sun JC, Tse MT, Gorzalka BB. Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol. 2006;9(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  72. Boukerche F, Khalil MZ, Shirk DV, Lagman JG. Serotonin syndrome misdiagnosed in a patient who used a cannabis dab pen. Prim Care Companion CNS Disord. 2022;24(2):40574.

  73. Baltz JW, Le LT. Serotonin syndrome versus cannabis toxicity in the emergency department. Clin Pract Cases Emerg Med. 2020;4(2):171–3.

    PubMed  PubMed Central  Google Scholar 

  74. Nadeem Z, Wu C, Burke S, Parker S. Serotonin syndrome and cannabis: a case report. Australas Psychiatry. 2024;32(1):100–1.

    Article  PubMed  Google Scholar 

  75. Tschoe C, Johnson L, Giugliano A, Sarwal A. Serotonin syndrome with exposure from tetrahydrocannabinol: a case report to highlight the side effects of increasing use of CBD products (5302). Neurology. 2020;94(15_supplement):5302.

  76. Lieberman A, Meservey AJ, Ampey M, Wani AA. Serotonin syndrome by acute tetrahydrocannabinol intoxication. Chest. 2023;164(4):A2906–7.

    Article  Google Scholar 

  77. Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology. 2022;239(5):1157–77.

    Article  PubMed  CAS  Google Scholar 

  78. Fišar Z. Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;38(1):68–77.

    Article  Google Scholar 

  79. Mazor M, Dvilansky A, Aharon M, Lazarovitz Z, Nathan I. Effect of cannabinoids on the activity of monoamine oxidase in normal human platelets. Arch Int Physiol Biochim. 1982;90(1):15–20.

    PubMed  CAS  Google Scholar 

  80. Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol. 2010;381(6):563–72.

    Article  PubMed  CAS  Google Scholar 

  81. Hindson SA, Andrews RC, Danson MJ, Van der Kamp MW, Manley AE, Sutcliffe OB, et al. Synthetic cannabinoid receptor agonists are monoamine oxidase‐A selective inhibitors. FEBS J. 2023;290(12):3243–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schurr A, Porath O, Krup M, Livne A. The effects of hashish components and their mode of action on monoamine oxidase from the brain. Biochem Pharmacol. 1978;27(21):2513–7.

    Article  PubMed  CAS  Google Scholar 

  83. Balachandran P, Elsohly M, Hill KP. Cannabidiol interactions with medications, illicit substances, and alcohol: a comprehensive review. J Gen Intern Med. 2021;36(7):2074–84.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab Dispos. 2011;39(11):2049–56.

    Article  PubMed  CAS  Google Scholar 

  85. Bonnet U. Moclobemide: therapeutic use and clinical studies. CNS Drug Rev. 2003;9(1):97–140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Poleszak E, Wośko S, Sławińska K, Wyska E, Szopa A, Świąder K, et al. Influence of the endocannabinoid system on the antidepressant activity of bupropion and moclobemide in the behavioural tests in mice. Pharmacol Rep. 2020;72(6):1562–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hill MN, Ho W-SV, Hillard CJ, Gorzalka BB. Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J Neural Transm. 2008;115(12):1673–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Neight. So that’s what happens: an experience with MAOI & cannabis (exp5774) Erowid: Erowid Center; 2002 [updated January 31, 2002]. https://erowid.org/exp/5774.

  89. Waters K. Pharmacologic similarities and differences among hallucinogens. J Clin Pharmacol. 2021;61:S100–13.

    Article  PubMed  CAS  Google Scholar 

  90. Nichols DE. Psychedelics. Pharmacol Rev. 2016;68(2):264–355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Nichols DE. Chemistry and structure–activity relationships of psychedelics. Behav Neurobiol Psychedelic Drugs. 2018;36:1–43.

  92. Schenk S, Highgate Q. Methylenedioxymethamphetamine (MDMA): serotonergic and dopaminergic mechanisms related to its use and misuse. J Neurochem. 2021;157(5):1714–24.

    Article  PubMed  CAS  Google Scholar 

  93. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70(3):621–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bertron JL, Seto M, Lindsley CW. DARK classics in chemical neuroscience: phencyclidine (PCP). ACS Chem Neurosci. 2018;9(10):2459–74.

    Article  PubMed  CAS  Google Scholar 

  95. Wasko MJ, Witt-Enderby PA, Surratt CK. DARK classics in chemical neuroscience: ibogaine. ACS Chem Neurosci. 2018;9(10):2475–83.

    Article  PubMed  CAS  Google Scholar 

  96. Ona G, Reverte I, Rossi GN, Dos Santos RG, Hallak JE, Colomina MT, et al. Main targets of ibogaine and noribogaine associated with its putative anti-addictive effects: a mechanistic overview. J Psychopharmacol. 2023;37(12):1190–200.

    Article  PubMed  CAS  Google Scholar 

  97. Berlowitz I, Egger K, Cumming P. Monoamine oxidase inhibition by plant-derived β-carbolines; implications for the psychopharmacology of tobacco and ayahuasca. Front Pharmacol. 2022;13:886408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Resnick O, Krus DM, Raskin M. LSD-25 action in normal subjects treated with a monoamine oxidase inhibitor. Life Sci. 1964;3:1207–14.

    Article  CAS  Google Scholar 

  99. Grof S, Dytrych Z. Blocking of LSD reaction by premedication with Niamid. Act Nerv Super (Praha). 1965;7(3):306.

    PubMed  CAS  Google Scholar 

  100. Bonson KR, Murphy DL. Alterations in responses to LSD in humans associated with chronic administration of tricyclic antidepressants, monoamine oxidase inhibitors or lithium. Behav Brain Res. 1995;73(1–2):229–33.

    Article  CAS  Google Scholar 

  101. Bonson KR, Buckholtz JW, Murphy DL. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans. Neuropsychopharmacology. 1996;14(6):425–36.

    Article  PubMed  CAS  Google Scholar 

  102. Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. Beta-carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol. 2010;48(3):839–45.

    Article  PubMed  CAS  Google Scholar 

  103. Murphy DL, Brand E, Goldman T, Baker M, Wright C, van Kammen D, et al. Platelet and plasma amine oxidase inhibition and urinary amine excretion changes during phenelzine treatment. J Nerv Ment Dis. 1977;164(2):129–34.

    Article  PubMed  CAS  Google Scholar 

  104. Papaseit E, Farré M, Pérez-Mañá C, Torrens M, Ventura M, Pujadas M, et al. Acute pharmacological effects of 2C-B in humans: an observational study. Front Pharmacol. 2018;9:206.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Theobald DS, Maurer HH. Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochem Pharmacol. 2007;73(2):287–97.

    Article  PubMed  CAS  Google Scholar 

  106. Wagmann L, Brandt SD, Stratford A, Maurer HH, Meyer MR. Interactions of phenethylamine‐derived psychoactive substances of the 2C‐series with human monoamine oxidases. Drug Test Anal. 2019;11(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  107. van Nugteren– Lonkhuyzen JJ, de Lange DW, van Riel AJ, Vrolijk RQ, Ohana D, Hondebrink L. The clinical toxicology of 4-bromo-2, 5-dimethoxyphenethylamine (2C-B): the severity of poisoning after exposure to low to moderate and high doses. Ann Emerg Med. 2020;76(3):303–17.

    Article  Google Scholar 

  108. Debaser. Chaotic potentiation: an experience with 2C-B & moclobemide/MDMA & Moclobemide (exp5862) Erowid: Erowid Center; 2001 [updated March 24, 2001]. https://erowid.org/exp/5862.

  109. Shaman. After-school special: an experience with 2C-B (exp40622) Erowid: Erowid Center; 2005 [updated April 15, 2005]. https://erowid.org/exp/40622.

  110. Xorkoth. [Combo Subthread] 2C-B + MAOIs Bluelight2008 [updated October 3, 2008]. https://www.bluelight.org/community/threads/combo-subthread-2c-b-maois.399329/.

  111. [deleted] Ru. [Deleted post in r/2cb] Reddit2025. https://www.reddit.com/r/2cb/comments/1in94ax/deleted_by_user/. Accessed 30 Dec 2025.

  112. darkred6949. Selegiline + DLPA + MDMA + 2CB = Hospital Reddit: r/Drugus; 2021. https://www.reddit.com/r/Drugs/comments/p25dr6/selegiline_dlpa_mdma_2cb_hospital/. Accessed 30 Dec 2025.

  113. Dourron HM, Nichols CD, Simonsson O, Bradley M, Carhart-Harris R, Hendricks PS. 5-MeO-DMT: an atypical psychedelic with unique pharmacology, phenomenology & risk? Psychopharmacology. 2025;242(7):1457–79.

    Article  PubMed  CAS  Google Scholar 

  114. Shen HW, Jiang XL, Winter JC, Yu AM. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab. 2010;11(8):659–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Halberstadt AL, Nichols DE, Geyer MA. Behavioral effects of α, α, β, β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor. Psychopharmacology. 2012;221:709–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Jiang X-L, Shen H-W, Yu A-M. Modification of 5-methoxy-N, N-dimethyltryptamine-induced hyperactivity by monoamine oxidase A inhibitor harmaline in mice and the underlying serotonergic mechanisms. Pharmacol Rep. 2016;68:608–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Halberstadt AL, Buell MR, Masten VL, Risbrough VB, Geyer MA. Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology. 2008;201:55–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Shen H-W, Wu C, Jiang X-L, Yu A-M. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics. Biochem Pharmacol. 2010;80(1):122–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Halberstadt AL. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine. Pharmacol Biochem Behav. 2016;143:1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Jiang X-L, Shen H-W, Yu A-M. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors. Neuropharmacology. 2015;89:342–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Ott J. Pharmahuasca: human pharmacology of oral DMT plus harmine. J Psychoact Drugs. 1999;31(2):171.

    Article  CAS  Google Scholar 

  122. Brush DE, Bird SB, Boyer EW. Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol. 2004;42(2):191–5.

    Article  PubMed  CAS  Google Scholar 

  123. Sklerov J, Levine B, Moore KA, King T, Fowler D. A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol. 2005;29(8):838–41.

    Article  PubMed  CAS  Google Scholar 

  124. Carbonaro TM, Eshleman AJ, Forster MJ, Cheng K, Rice KC, Gatch MB. The role of 5-HT2A, 5-HT2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N,N-dimethyltryptamine and N,N-diisopropyltryptamine in rats and mice. Psychopharmacology. 2015;232(1):275–84.

    Article  PubMed  CAS  Google Scholar 

  125. Good M, Joel Z, Benway T, Routledge C, Timmermann C, Erritzoe D, et al. Pharmacokinetics of N,N-dimethyltryptamine in humans. Eur J Drug Metab Pharmacokinet. 2023;48(3):311–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Riba J, McIlhenny EH, Bouso JC, Barker SA. Metabolism and urinary disposition of N,N‐dimethyltryptamine after oral and smoked administration: a comparative study. Drug Test Anal. 2015;7(5):401–6.

    Article  PubMed  CAS  Google Scholar 

  127. Erne L, Vogt SB, Müller L, Nuraj A, Becker A, Klaiber A, et al. Acute dose-dependent effects and self-guided titration of continuous N,N-dimethyltryptamine infusions in a double-blind placebo-controlled study in healthy participants. Neuropsychopharmacology. 2025;50(6):1008–16.

    Article  PubMed  CAS  Google Scholar 

  128. Vogt SB, Ley L, Erne L, Straumann I, Becker AM, Klaiber A, et al. Acute effects of intravenous DMT in a randomized placebo-controlled study in healthy participants. Transl Psychiatry. 2023;13(1):172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Buckholtz NS, Boggan WO. Monoamine oxidase inhibition in brain and liver produced by β-carbolines: structure-activity relationships and substrate specificity. Biochem Pharmacol. 1977;26(21):1991–6.

    Article  PubMed  CAS  Google Scholar 

  130. Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther. 2003;306(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  131. Barker SA, Monti JA, Christian ST. Metabolism of the hallucinogen N,N-dimethyltryptamine in rat brain homogenates. Biochem Pharmacol. 1980;29(7):1049–57.

    Article  PubMed  CAS  Google Scholar 

  132. Jenner P, Marsden C, Thanki C. Behavioural changes induced by N,N-dimethyl-tryptamine in rodents. Br J Pharmacol. 1980;69(1):69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lu L, Wilson A, Moore R, Domino E. Correlation between brain N,N dimethyltryptamine (DMT) levels and bar pressing behavior in rats: effect of MAO inhibition. Pharmacologist. 1974;16(2):No. 265.

  134. Moore R, Demetriou S, Domino E. Effects of iproniazid, chlorpromazine and methiothepin on DMT-induced changes in body temperature, pupillary dilatation, blood pressure and EEG in the rabbit. Arch Int Pharmacodyn Ther. 1975;213(1):64–72.

    PubMed  CAS  Google Scholar 

  135. Shah NS, Hedden MP. Behavioral effects and metabolic fate of N,N-dimethyltryptamine in mice pretreated with β-diethylaminoethyl-diphenylpropylacetate (SKF 525-A), iproniazid and chlorpromazine. Pharmacol Biochem Behav. 1978;8(4):351–6.

    Article  PubMed  CAS  Google Scholar 

  136. Lu LJW, Domino EF. Effects of iproniazid and tranylcypromine on the half-life of N,N-dimethyltryptamine in rat brain and liver. Biochem Pharmacol. 1976;25(13):1521–7.

    Article  CAS  Google Scholar 

  137. Szara S, Axelrod J. Hydroxylation and N-demethylation of N,N-dimethyltryptamine. Experientia. 1959;15(6):216–7.

    Article  PubMed  CAS  Google Scholar 

  138. Sai Halasz A. The effect of MAO inhibition on the experimental psychosis induced by dimethyltryptamine. Psychopharmacologia. 1963;4:385–8.

    Article  PubMed  CAS  Google Scholar 

  139. Aicher HD, Mueller MJ, Dornbierer DA, Suay D, Elsner C, Wicki I, et al. Potential therapeutic effects of an ayahuasca-inspired N,N-DMT and harmine formulation: a controlled trial in healthy subjects. Front Psychiatry. 2024. https://doi.org/10.3389/fpsyt.2023.1302559.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dornbierer DA, Marten L, Mueller J, Aicher HD, Mueller MJ, Boxler M, et al. Overcoming the clinical challenges of traditional ayahuasca: a first-in-human trial exploring novel routes of administration of N,N-dimethyltryptamine and harmine. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1246892.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mueller MJ, Aicher HD, Dornbierer DA, Marten L, Suay D, Meling D, et al. Pharmacokinetics and pharmacodynamics of an innovative psychedelic N,N-dimethyltryptamine/harmine formulation in healthy participants: a randomized controlled trial. Int J Neuropsychopharmacol. 2025;28(1):pyaf001.

    Article  CAS  Google Scholar 

  142. Liu C-H, Chu W-L, Liao S-C, Yang C-C, Lin C-C. Syrian rue seeds interacted with acacia tree bark in an herbal stew resulted in N,N-dimethyltryptamine poisoning. Clin Toxicol. 2019;57(10):867–9.

    Article  CAS  Google Scholar 

  143. Brown T, Shao W, Ayub S, Chong D, Cornelius C. A physician’s attempt to self-medicate bipolar depression with N,N-dimethyltryptamine (DMT). J Psychoact Drugs. 2017;49(4):294–6.

    Article  Google Scholar 

  144. Glennon RA, Dukat M. 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): from an obscure to pivotal member of the DOX family of serotonergic psychedelic agents—a review. ACS Pharmacol Transl Sci. 2024;7(6):1722–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Scorza MC, Carrau C, Silveira R, Zapata-Torres G, Cassels BK, Reyes-Parada M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives: structure–activity relationships. Biochem Pharmacol. 1997;54(12):1361–9.

    Article  PubMed  CAS  Google Scholar 

  146. Ewald AH, Fritschi G, Maurer HH. Metabolism and toxicological detection of the designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;857(1):170–4.

    Article  PubMed  CAS  Google Scholar 

  147. De Gregorio D, Comai S, Posa L, Gobbi G. d-Lysergic acid diethylamide (LSD) as a model of psychosis: mechanism of action and pharmacology. Int J Mol Sci. 2016;17(11):1953.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Libânio Osório Marta RF. Metabolism of lysergic acid diethylamide (LSD): an update. Drug Metab Rev. 2019;51(3):378–87.

    Article  PubMed  Google Scholar 

  149. Freedman DX, Gottlieb R, Lovell RA. Psychotomimetic drugs and brain 5-hydroxytryptamine metabolism. Biochem Pharmacol. 1970;19:1181–8.

    Article  CAS  Google Scholar 

  150. Prozialeck WC, Vogel WH. MAO inhibition and the effects of centrally administered LSD, serotonin, and 5-methoxytryptamine on the conditioned avoidance response in rats. Psychopharmacology. 1979;60(3):309–10.

    Article  PubMed  CAS  Google Scholar 

  151. Cunningham KA, Carroll BA, Appel JB. Effects of repeated administration of the monoamine oxidase inhibitor phenelzine on the discriminability of d-lysergic acid diethylamide (LSD) and 1-(m-trifluoromethylphenyl) piperazine (TFMPP). Psychopharmacology. 1986;89(1):134–5.

    Article  PubMed  CAS  Google Scholar 

  152. McManus DJ, Mousseau DD, Paetsch PR, Wishart TB, Greenshaw AJ. β-Adrenoceptors and antidepressants: possible 2-phenylethylamine mediation of chronic phenelzine effects. Biol Psychiatry. 1991;30(11):1122–30.

    Article  PubMed  CAS  Google Scholar 

  153. Mathov E. The risks of monoamine oxidase inhibitors in the treatment of bronchial asthma. J Allergy. 1963;34(6):483–8.

    Article  PubMed  CAS  Google Scholar 

  154. Marecek P, Bakalár E, Zeman K. Attempt of blocking LSD intoxication with tranylcypromine. Act Nerv Super. 1968;10(3):276–7.

    CAS  Google Scholar 

  155. Cassels Niven B, Sáez Briones P. Dark classics in chemical neuroscience: mescaline. ACS Chm Neurosci. 2018;9(8):1944–53.

  156. Dinis-Oliveira RJ, Pereira CL, Da Silva DD. Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: clinical and forensic repercussions. Curr Mol Pharmacol. 2019;12(3):184–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Lush I. A comparison of the effect of mescaline on activity and emotional defaecation in seven strains of mice. Br J Pharmacol. 1975;55(1):133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Friedhoff A, Goldstein M. New developments in metabolism of mescaline and related amines. Ann N Y Acad Sci. 1962;96(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  159. Smythies J, Johnston V, Bradley R. Alteration by pretreatment with Iproniazid and an inactive mescaline analogue of a behaviour change induced by Mescaline. Nature. 1967;216(5111):196–7.

    Article  PubMed  CAS  Google Scholar 

  160. Steiner JESF. Simultaneous studies of blood sugar, serotonin metabolism behavioural changes and EEG on the wake rabbit after administration of mescaline and psilocybin. Harokeach Haivri (J Pharm Ass, Israel). 1963;9:498–509.

    CAS  Google Scholar 

  161. Seiler N, Demisch L. Oxidative metabolism of mescaline in the central nervous system-II: oxidative deamination of mescaline and 2,3,4-trimethoxy-β-phenylethylamine by different mouse brain area in vitro. Biochem Pharmacol. 1971;20(9):2485–93.

    Article  PubMed  CAS  Google Scholar 

  162. rasselas21. Like being hit by a mack truck: an experience with Syrian Rue & Mescaline (exp12354) 2015 [updated Sep 23, 2015]. http://erowid.org/exp/12354.

  163. Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, et al. In vitro and in vivo metabolism of psilocybin’s active metabolite psilocin. Front Pharmacol. 2024;15:1391689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Erkizia-Santamaría I, Alles-Pascual R, Horrillo I, Meana J, Ortega J. Serotonin 5-HT2A, 5-HT2c and 5-HT1A receptor involvement in the acute effects of psilocybin in mice. In vitro pharmacological profile and modulation of thermoregulation and head-twich response. Biomed Pharmacother. 2022;154:113612.

    Article  PubMed  Google Scholar 

  165. Blei F, Dörner S, Fricke J, Baldeweg F, Trottmann F, Komor A, et al. Simultaneous production of psilocybin and a cocktail of β‐carboline monoamine oxidase inhibitors in “magic” mushrooms. Chemistry Eur J. 2020;26(3):729–34.

    Article  CAS  Google Scholar 

  166. Shahar O, Botvinnik A, Shwartz A, Lerer E, Golding P, Buko A, et al. Effect of chemically synthesized psilocybin and psychedelic mushroom extract on molecular and metabolic profiles in mouse brain. Mol Psychiatry. 2024;29(7):2059–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Vojtĕchovský M, Hort V, Safratová V. Influence of MAO inhibitors on psilocybine induced psychosis. Act Nerv Super. 1968;10(3):278–9.

    Google Scholar 

  168. Barnett BS, Koons CJ, Van den Eynde V, Gillman PK, Bodkin JA. Hypertensive emergency secondary to combining psilocybin mushrooms, extended release dextroamphetamine-amphetamine, and tranylcypromine. J Psychoact Drugs. 2024. https://doi.org/10.1080/02791072.2024.2368617.

    Article  Google Scholar 

  169. Mah SJ, Tang Y, Liauw PE, Nagel JE, Schneider AS. Ibogaine acts at the nicotinic acetylcholine receptor to inhibit catecholamine release. Brain Res. 1998;797(1):173–80.

    Article  PubMed  CAS  Google Scholar 

  170. polytrip. ibogahuasca-2 DMT-Nexus2010 [updated July 25, 2010]. https://www.dmt-nexus.me/forum/framehelper.aspx?g=posts&m=992942.

  171. polytrip. Micro Dose of Iboga and Caapi Combo (post #21) DMT-Nexus2010 [updated June 13, 2010]. https://www.dmt-nexus.me/forum/default.aspx?g=posts&m=158486.

  172. polytrip. ibogahuasca DMT-Nexus forum2010 [updated July 16, 2010]. https://forum.dmt-nexus.me/threads/ibogahuasca.310227/.

  173. Wood PL. The NMDA receptor complex: a long and winding road to therapeutics. IDrugs. 2005;8(3):229–35.

    PubMed  CAS  Google Scholar 

  174. Takki S, Nikki P, Jäättelä A, Tammisto T. Ketamine and plasma catecholamines. Br J Anaesth. 1972;44(12):1318–22.

    Article  PubMed  CAS  Google Scholar 

  175. Vankawala J, Naples G, Avila-Quintero VJ, Ramírez KL, Flores JM, Bloch MH, et al. Meta-analysis: hemodynamic responses to sub-anesthetic doses of ketamine in patients with psychiatric disorders. Front Psychiatry. 2021;12:549080.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Smith D, Azzaro A, Turndorf H, Abbott SB. The effect of ketamine HCl on the in vitro metabolism of norepinephrine in rat cerebral cortex tissue. Neuropharmacology. 1975;14(7):473–81.

    Article  PubMed  CAS  Google Scholar 

  177. Kubota T, Hirota K, Yoshida H, Takahashi S, Ohkawa H, Anzawa N, et al. Inhibitory effect of clonidine on ketamine-induced norepinephrine release from the medial prefrontal cortex in rats. Br J Anaesth. 1999;83(6):945–7.

    Article  PubMed  CAS  Google Scholar 

  178. Kitagawa H, Yamazaki T, Akiyama T, Mori H, Sunagawa K. Effects of ketamine on exocytotic and non-exocytotic noradrenaline release. Neurochem Int. 2003;42(3):261–7.

    Article  PubMed  CAS  Google Scholar 

  179. Kubota T, Anzawa N, Hirota K, Yoshida H, Kushikata T, Matsuki A. Effects of ketamine and pentobarbital on noradrenaline release from the medial prefrontal cortex in rats. Can J Anesth/Journal canadien d’anesthésie. 1999;46:388–92.

    Article  PubMed  CAS  Google Scholar 

  180. Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its metabolites as antidepressants. Biochem Pharmacol. 2022;197:114892.

    Article  PubMed  CAS  Google Scholar 

  181. Bruce D, Capan L. Antidepressants do not increase the lethality of ketamine in mice. Br J Anaesth. 1983;55(5):457–9.

    Article  PubMed  CAS  Google Scholar 

  182. Ago Y, Tanabe W, Higuchi M, Tsukada S, Tanaka T, Yamaguchi T, et al. (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism. Int J Neuropsychopharmacol. 2019;22(10):665–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Daniels S, El Mansari M, Hamoudeh R, Blier P. Ketamine promptly normalizes excess norepinephrine and enhances dopamine neuronal activity in Wistar Kyoto rats. Front Pharmacol. 2023;14:1276309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Martin L, Bouchal RL, Smith D. Ketamine inhibits serotonin uptake in vivo. Neuropharmacology. 1982;21(2):113–8.

    Article  PubMed  CAS  Google Scholar 

  185. Tso MM, Blatchford KL, Callado LF, McLaughlin DP, Stamford JA. Stereoselective effects of ketamine on dopamine, serotonin and noradrenaline release and uptake in rat brain slices. Neurochem Int. 2004;44(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  186. Nishimura M, Sato K. Ketamine stereoselectively inhibits rat dopamine transporter. Neurosci Lett. 1999;274(2):131–4.

    Article  PubMed  CAS  Google Scholar 

  187. Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, et al. Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology. 1998;88(3):768–74.

    Article  PubMed  CAS  Google Scholar 

  188. Ventura R, Latagliata EC, Morrone C, La Mela I, Puglisi-Allegra S. Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS ONE. 2008;3(8):e3044.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ago Y, Yokoyama R, Asano S, Hashimoto H. Roles of the monoaminergic system in the antidepressant effects of ketamine and its metabolites. Neuropharmacology. 2023;223:109313.

    Article  PubMed  CAS  Google Scholar 

  190. Tao R, Rudacille M, Zhang G, Ma Z. Changes in intensity of serotonin syndrome caused by adverse interaction between monoamine oxidase inhibitors and serotonin reuptake blockers. Neuropsychopharmacology. 2014;39(8):1996–2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Doyle DJ. Ketamine induction and monoamine oxidase inhibitors. J Clin Anesth. 1990;2(5):324–5.

    Article  PubMed  CAS  Google Scholar 

  192. Veraart JK, Smith-Apeldoorn SY, Kutscher M, Vischjager M, van der Meij A, Kamphuis J, et al. Safety of ketamine augmentation to monoamine oxidase inhibitors in treatment-resistant depression: a systematic literature review and case series. J Clin Psychiatry. 2022;83(6):43508.

    Article  Google Scholar 

  193. Bartova L, Vogl SE, Stamenkovic M, Praschak-Rieder N, Naderi-Heiden A, Kasper S, et al. Combination of intravenous S-ketamine and oral tranylcypromine in treatment-resistant depression: a report of two cases. Eur Neuropsychopharmacol. 2015;25(11):2183–4.

    Article  PubMed  CAS  Google Scholar 

  194. Katz R, Toprak M, Wilkinson S, Sanacora G, Ostroff R. Concurrent use of ketamine and monoamine oxidase inhibitors in the treatment of depression: a letter to the editor. Gen Hosp Psychiatry. 2018;54:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Ludwig VM, Sauer C, Young AH, Rucker J, Bauer M, Findeis H, et al. Cardiovascular effects of combining subcutaneous or intravenous esketamine and the MAO inhibitor tranylcypromine for the treatment of depression: a retrospective cohort study. CNS Drugs. 2021;35:881–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lu BY, Agapoff JR, Olson DJ, Williams SR, Roller A, Goebert D. Rapid and sustained improvement in treatment-refractory depression through use of acute intravenous ketamine and concurrent transdermal selegiline: a case series. J Affect Disord. 2020;262:40–2.

    Article  PubMed  CAS  Google Scholar 

  197. Bottemanne H, Bonnard E, Claret A, Petit A-C, Gaillard R, Fossati P. Ketamine and monoamine oxidase inhibitor combination: utility, safety, efficacy? J Clin Psychopharmacol. 2020;40(6):636–8.

    Article  PubMed  CAS  Google Scholar 

  198. Wang JCC, Swainson J. The concurrent treatment with intravenous ketamine and an irreversible monoamine oxidase inhibitor for treatment-resistant depression without hypertensive crises. J Clin Psychopharmacol. 2020;40(5):515–7.

    Article  PubMed  Google Scholar 

  199. Lizarraga LE, Cholanians AB, Phan AV, Herndon JM, Lau SS, Monks TJ. Vesicular monoamine transporter 2 and the acute and long-term response to 3, 4-(±)-methylenedioxymethamphetamine. Toxicol Sci. 2015;143(1):209–19.

    Article  PubMed  CAS  Google Scholar 

  200. Hysek C, Simmler L, Ineichen M, Grouzmann E, Hoener M, Brenneisen R, et al. The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“ecstasy”) in humans. Clin Pharmacol Ther. 2011;90(2):246–55.

    Article  PubMed  CAS  Google Scholar 

  201. Freezer A, Salem A, Irvine RJ. Effects of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) and para-methoxyamphetamine on striatal 5-HT when co-administered with moclobemide. Brain Res. 2005;1041(1):48–55.

    Article  PubMed  CAS  Google Scholar 

  202. Hewton R, Salem A, Irvine RJ. Potentiation of 3,4‐methylenedioxymethamphetamine‐induced 5‐HT release in the rat substantia nigra by clorgyline, a monoamine oxidase A inhibitor. Clin Exp Pharmacol Physiol. 2007;34(10):1051–7.

    Article  PubMed  CAS  Google Scholar 

  203. Alves E, Summavielle T, Alves CJ, Custódio JBA, Fernandes E, de Lourdes BM, et al. Preclinical study: ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A. Addict Biol. 2009;14(2):185–93.

    Article  PubMed  CAS  Google Scholar 

  204. Alves E, Summavielle T, Alves CJ, Gomes-da-Silva J, Barata JC, Fernandes E, et al. Monoamine oxidase-B mediates ecstasy-induced neurotoxic effects to adolescent rat brain mitochondria. J Neurosci. 2007;27(38):10203–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Hrometz SL, Brown AW, Nichols DE, Sprague JE. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy)-mediated production of hydrogen peroxide in an in vitro model: the role of dopamine, the serotonin-reuptake transporter, and monoamine oxidase-B. Neurosci Lett. 2004;367(1):56–9.

    Article  PubMed  CAS  Google Scholar 

  206. Smilkstein MJ, Smolinske SC, Rumack BH. A case of MAO inhibitor/MDMA interaction: agony after ecstasy. J Toxicol Clin Toxicol. 1987;25(1–2):149–59.

    Article  PubMed  CAS  Google Scholar 

  207. Copeland J, Dillon P, Gascoigne M. Ecstasy and the concomitant use of pharmaceuticals. Addict Behav. 2006;31(2):367–70.

    Article  PubMed  Google Scholar 

  208. Edinoff AN, Swinford CR, Odisho AS, Burroughs CR, Stark CW, Raslan WA, et al. Clinically relevant drug interactions with monoamine oxidase inhibitors. Health Psychol Res. 2022;10(4):39576.

    PubMed  PubMed Central  Google Scholar 

  209. Silins E, Copeland J, Dillon P. Qualitative review of serotonin syndrome, ecstasy (MDMA) and the use of other serotonergic substances: hierarchy of risk. Aust N Z J Psychiatry. 2007;41(8):649–55.

    Article  PubMed  Google Scholar 

  210. Mueller PD, Korey WS. Death by “ecstasy”: the serotonin syndrome? Ann Emerg Med. 1998;32(3):377–80.

    Article  PubMed  CAS  Google Scholar 

  211. Simmler L, Buser T, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Vuori E, Henry JA, Ojanperä I, Nieminen R, Savolainen T, Wahlsten P, et al. Death following ingestion of MDMA (ecstasy) and moclobemide. Addiction. 2003;98(3):365–8.

    Article  PubMed  Google Scholar 

  213. Pilgrim J, Gerostamoulos D, Woodford N, Drummer OH. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci Int. 2012;215(1–3):184–8.

    Article  PubMed  CAS  Google Scholar 

  214. nanobrain. Finding beauty in a sea of masks: an experience with 2C-I, MDMA/MDA, cannabis, selegeline, piracetam, alcohol & alprazolam (exp28270) Erowid: Erowid Center; 2003 [updated November 9, 2003]. https://erowid.org/exp/28270.

  215. nocturnalnoob. Self Testing Selegiline to prevent MDMA induced neurotoxicity, an irresponsible experiment. Reddit2016. https://www.reddit.com/r/DrugNerds/comments/4rw8p5/self_testing_selegiline_to_prevent_mdma_induced/. Accessed 30 Dec 2025.

  216. Advanc3d. Deprenyl (Selegiline) and MDMA Bluelight.org2008 [updated July 28, 2008]. https://www.bluelight.org/community/threads/deprenyl-selegiline-and-mdma.390747/.

  217. Usdin E, Usdin VR. Effects of psychotropic compounds on enzyme systems, II. In vitro inhibition of monoamine oxidase. Proc Soc Exp Biol Med. 1961;108(2):461–3.

    Article  PubMed  CAS  Google Scholar 

  218. Domino EF. Neurobiology of phencyclidine—an update. NIDA Res Monog. 21. U. S. Department of Health, Education, and Welfare; 1978;18–43.

  219. Adams BW, Moghaddam B. Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry. 2001;50(10):750–7.

    Article  PubMed  CAS  Google Scholar 

  220. Li Z, Boules M, Williams K, Peris J, Richelson E. The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex. Brain Res. 2010;1311:28–36.

    Article  PubMed  CAS  Google Scholar 

  221. Taube H, Montel H, Hau G, Starke K. Phencyclidine and ketamine: comparison with the effect of cocaine on the noradrenergic neurones of the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol. 1975;291(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  222. Chen G, Ensor CR, Bohner B. An investigation on the sympathomimetic properties of phencyclidine by comparison with cocaine and desoxyephedrine. J Pharmacol Exp Ther. 1965;149(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  223. Johnson KM. Neurochemical pharmacology of phencyclidine. NIDA Res Monogr. 21. U.S. Department of Health, Education, and Welfare; 1978:44–53.

  224. Murray T, Horita A, editors. Effects of monoamine oxidase inhibitors on phencyclidine induced stereotyped behavior and brain levels in rats. Proc West Pharmacol Soc. 1979;22:20–233.

  225. Brito-da-Costa AM, Dias-da-Silva D, Gomes NG, Dinis-Oliveira RJ, Madureira-Carvalho Á. Pharmacokinetics and pharmacodynamics of salvinorin a and Salvia divinorum: clinical and forensic aspects. Pharmaceuticals. 2021;14(2):116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Grilli M, Neri E, Zappettini S, Massa F, Bisio A, Romussi G, et al. Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals. Neuropharmacology. 2009;57(5–6):523–30.

    Article  PubMed  CAS  Google Scholar 

  227. Murple. Big Guns: an experience with Huasca Brew (Syrian Rue, M. tenuiflora, & V. africana) & Salvia divinorum (exp2369) Erowid.org2000 [updated Oct 8, 2000]. http://erowid.org/exp/2369.

  228. Expected JMT. Feedback loop: an experience with Salvia divinorum & Moclobemide (exp2148) Erowid.org2000 [updated Jun 26, 2000]. http://erowid.org/exp/2148.

  229. Psilo_smylin. Sitting up or standing down?: an experience with moclobemide, DMT & Salvia divinorum (6x extract) (exp22803) Erowid.org2005 [updated May 9, 2005]. http://erowid.org/exp/22803.

  230. Justin. Lysergic bioassay I—visual and auditory: an experience with LSA, Syrian Rue & Salvia divinorum (exp55483) Erowid.org2007 [updated Feb 12, 2007]. http://erowid.org/exp/55483.

  231. Iopener. Unification with the ineffable god-head: an experience with mushrooms—P. cubensis, Syrian Rue, Nitrous Oxide & Salvia divinorum (exp36020) Erowid.org2005 [updated Jun 28, 2005]. http://erowid.org/exp/36020.

  232. Nowhereman. The detached symbols of self: an experience with Huasca Combo (Syrian Rue & P. viridis), 5-MeO-DMT, & Salvia divinorum (10x extract) (exp18058) Erowid.org2002 [updated Dec 5, 2002]. http://erowid.org/exp/18058.

  233. Nowhereman. impossible: an experience with Huasca Combo (Syrian Rue & P. viridis) & Salvia divinorum (10x extract) (exp13267) Erowid.org2002 [updated Dec 5, 2002]. http://erowid.org/exp/13267.

  234. Salviahuasca. Gummy Lego Land: an experience with Syrian Rue & Salvia divinorum (exp53881) Erowid.org2007 [updated Oct 6, 2007]. http://erowid.org/exp/53881.

  235. S. S. Johnny Mexicano: The Mexican Prince: an experience with Huasca Combo (Syrian Rue & A. maidenii) & Salvia divinorum (exp34853) Erowid.org2005 [updated Sep 7, 2005]. http://erowid.org/exp/34853.

  236. Jon. More than expected: an experience with Salvia divinorum, Syrian Rue & Cannabis (exp13013) Erowid.org2004 [updated Mar 8, 2004]. http://erowid.org/exp/13013.

  237. Grizz. The frog attacks: an experience with Huasca Combo (Syrian Rue & D. cabrerana) & Salvia divinorum (exp40236) Erowid.org2005 [updated Mar 29, 2005]. http://erowid.org/exp/40236.

  238. Unlight. The inherent duality of creation: an experience with Syrian Rue, Opium, Salvia divinorum, & LSD (exp6462) Erowid.org2002 [updated Feb 28, 2002]. http://erowid.org/exp/6462.

  239. Careful B. Avoid mixing: an experience with Salvia divinorum, Syrian Rue, and/or Tobacco, DXM & Pseudoephedrine (exp9530) Erowid.org2004 [updated Mar 8, 2004erowid.org/exp/9530]. http://erowid.org/exp/9530.

  240. Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci. 2013;36(3):195–206.

    Article  PubMed  CAS  Google Scholar 

  241. Abadie D, Rousseau V, Logerot S, Cottin J, Montastruc J-L, Montastruc F. Serotonin syndrome: analysis of cases registered in the French pharmacovigilance database. J Clin Psychopharmacol. 2015;35(4):382–8.

    Article  PubMed  CAS  Google Scholar 

  242. Baldo BA. Opioid analgesic drugs and serotonin toxicity (syndrome): mechanisms, animal models, and links to clinical effects. Arch Toxicol. 2018;92(8):2457–73.

    Article  PubMed  CAS  Google Scholar 

  243. Rosenbaum HK, Van den Eynde V, Gillman PK. Expert opinion on anesthetic considerations for patients receiving a classic monoamine oxidase inhibitor. Anesth Analg. 2022;134(3):560–9.

  244. Gillman P. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95(4):434–41.

    Article  PubMed  CAS  Google Scholar 

  245. Baldo BA, Rose MA. The anaesthetist, opioid analgesic drugs, and serotonin toxicity: a mechanistic and clinical review. Br J Anaesth. 2020;124(1):44–62.

    Article  PubMed  CAS  Google Scholar 

  246. Rickli A, Liakoni E, Hoener MC, Liechti ME. Opioid‐induced inhibition of the human 5‐HT and noradrenaline transporters in vitro: link to clinical reports of serotonin syndrome. Br J Pharmacol. 2018;175(3):532–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Indriani DW, Rahmawati SI, Bayu A, Ahmadi P, Sari AN, Zuraida Z, et al. Serotonin release mediates analgesia via opioidergic system and withdrawal symptoms in chronic kratom extract-treated mice. BMC Complement Med Ther. 2025;25(1):205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Pérez-Cruet J, Thoa NB, Ng LK. Acute effects of heroin and morphine on newly synthesized serotonin in rat brain. Life Sci. 1975;17(3):349–62.

    Article  PubMed  Google Scholar 

  249. Jounela AJ. Influence of phenelzine on the toxicity of some analgesics in mice. Annales Medicinae Experimentalis et Biologiae Fenniae; 1970;48(4):261–5.

  250. Beechinor RJ, Tyson R, Roth ME. Phenelzine and morphine drug-drug interaction? A literature review. J Pharm Pract. 2021;34(5):818–23.

    Article  PubMed  Google Scholar 

  251. Sinclair JG, Lo GF. The blockade of serotonin uptake into synaptosomes: relationship to an interaction with monoamine oxidase inhibitors. Can J Physiol Pharmacol. 1977;55(2):180–7.

    Article  PubMed  CAS  Google Scholar 

  252. Dodam JR, Cohn LA, Durham HE, Szladovits B. Cardiopulmonary effects of medetomidine, oxymorphone, or butorphanol in selegiline-treated dogs. Vet Anaesth Analg. 2004;31(2):129–37.

    Article  PubMed  CAS  Google Scholar 

  253. Evans-Prosser C. The use of pethidine and morphine in the presence of monoamine oxidase inhibitors. Br J Anaesth. 1968;40(4):279–82.

    Article  PubMed  CAS  Google Scholar 

  254. El-Ganzouri AR, Ivankovich AD, Braverman B, McCarthy R. Monoamine oxidase inhibitors: should they be discontinued preoperatively? Anesth Analg. 1985;64(6):592–6.

    Article  PubMed  CAS  Google Scholar 

  255. Antal EJ, Hendershot PE, Batts DH, Sheu WP, Hopkins NK, Donaldson KM. Linezolid, a novel oxazolidinone antibiotic: assessment of monoamine oxidase inhibition using pressor response to oral tyramine. J Clin Pharmacol. 2001;41(5):552–62.

    Article  PubMed  CAS  Google Scholar 

  256. Traver EC, Heil EL, Schmalzle SA. A cross-sectional analysis of linezolid in combination with methadone or buprenorphine as a cause of serotonin toxicity. Open Forum Infectious Disease 2022 Jul 1 (Vol. 9, No. 6, p. ofac331). Oxford University Press.

  257. Williams J. Basic opioid pharmacology. Rev Pain. 2008;1(2):2–5.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Elbaridi N, Kaye AD, Choi S, Urman RD. Current concepts of phenylpiperidine derivatives use in the treatment of acute and chronic pain. Pain Physician. 2017;20(2S):SE23.

    PubMed  Google Scholar 

  259. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.

    Article  PubMed  CAS  Google Scholar 

  260. Taylor CP, Traynelis SF, Siffert J, Pope LE, Matsumoto RR. Pharmacology of dextromethorphan: relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther. 2016;164:170–82.

    Article  PubMed  CAS  Google Scholar 

  261. Rogers K. Role of brain monoamines in the interaction between pethidine and tranylcypromine. Eur J Pharmacol. 1971;14(1):86–8.

    Article  PubMed  CAS  Google Scholar 

  262. Fuller RW, Snoddy HD. Inhibition of serotonin uptake and the toxic interaction between meperidine and monoamine oxidase inhibitors. Toxicol Appl Pharmacol. 1975;32(1):129–34.

    Article  PubMed  CAS  Google Scholar 

  263. Gessner P. Antagonism of the tranylcypromine-meperidine interaction by chlorpromazine in mice. J Pharmacol Exp Ther. 1973;186(1):39–46.

  264. Eade N, Renton K. Effect of monoamine oxidase inhibitors on the N-demethylation and hydrolysis of meperidine. Biochem Pharmacol. 1970;19(7):2243–50.

    Article  PubMed  CAS  Google Scholar 

  265. Eade N, Renton K. The effect of phenelzine and tranylcypromine on the degradation of meperidine. J Pharmacol Exp Ther. 1970;173(1):31–6.

    Article  PubMed  CAS  Google Scholar 

  266. Yeh S. Localization and characterization of meperidine esterase of rats. Drug Metab Dispos. 1982;10(4):319–25.

    Article  PubMed  CAS  Google Scholar 

  267. Fox MA, Jensen CL, Murphy DL. Tramadol and another atypical opioid meperidine have exaggerated serotonin syndrome behavioural effects, but decreased analgesic effects, in genetically deficient serotonin transporter (SERT) mice. Int J Neuropsychopharmacol. 2009;12(8):1055–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Juś A, Bujalska M, Makulska-Nowak HE. Modification of fentanyl analgesia by antidepressants. Pharmacology. 2010;85(1):48–53.

    Article  PubMed  Google Scholar 

  269. Mitchell RS. Fatal toxic encephalitis occurring during iproniazid therapy in pulmonary tuberculosis. Ann Intern Med. 1955;42(2):417–24.

    Article  PubMed  CAS  Google Scholar 

  270. Papp C, Benaim S. Toxic effects of iproniazid in a patient with angina. BMJ. 1958;2(5104):1070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Shee JC. Dangerous potentiation of pethidine by iproniazid, and its treatment. BMJ. 1960;2(5197):507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Palmer H. Potentiation of pethidine. BMJ. 1960;2(5203):944.

    Article  PubMed Central  Google Scholar 

  273. Snyder B. Revisiting old friends: update on opioid pharmacology. Aust Prescr. 2014. https://doi.org/10.18773/austprescr.2014.021.

    Article  Google Scholar 

  274. Taylor D. Alarming reaction to pethidine in patients on phenelzine. Lancet. 1962;280(7252):401–2.

    Article  Google Scholar 

  275. Meyer D, Halfin V. Toxicity secondary to meperidine in patients on monoamine oxidase inhibitors: a case report and critical review. J Clin Psychopharmacol. 1981;1(5):319–21.

    Article  PubMed  CAS  Google Scholar 

  276. Laundre CAK, Flick R, Sprung J. A shuddering interaction: meperidine, phenelzine, serotonin toxicity. A case approach to perioperative drug–drug interactions. Berlin: Springer; 2015. p. 275–9.

    Book  Google Scholar 

  277. Asch DA, Parker RM. The Libby Zion case: one step forward or two steps backward? N Engl J Med. 1988;318(12):771–5.

  278. Gillman P. Serotonin syndrome: history and risk. Fundam Clin Pharmacol. 1998;12(5):482–91.

    Article  PubMed  CAS  Google Scholar 

  279. Denton P, Borrelli V, Edwards N. Dangers of monoamine oxidase inhibitors. BMJ. 1962;2(5321):1752.

    Article  PubMed Central  Google Scholar 

  280. Ebrahim ZY, O’Hara J, Borden L, Tetzlaff J. Monoamine oxidase inhibitors and elective surgery. Cleve Clin J Med. 1993;60:129.

    Article  PubMed  CAS  Google Scholar 

  281. Heinonen E, Myllylä V. Safety of selegiline (deprenyl) in the treatment of Parkinson’s disease. Drug Saf. 1998;19(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  282. Chen JJ. Pharmacologic safety concerns in Parkinson’s disease: facts and insights. Int J Neurosci. 2011;121(sup2):45–52.

    Article  PubMed  CAS  Google Scholar 

  283. Jacob JE, Wagner ML, Sage JI. Safety of selegiline with cold medications. Ann Pharmacother. 2003;37(3):438–41.

    Article  PubMed  CAS  Google Scholar 

  284. Gillman PK. Possible serotonin syndrome with moclobemide and pethidine. Med J Aust. 1995;162(10):554.

    Article  PubMed  CAS  Google Scholar 

  285. Calvisi V, Ansseau M. Le cas clinique du mois. Confusion mentale liee a l’administration de tramadol chez une patiente sous IMAO. Rev Med Liège. 1999;54(12):912–3.

  286. Ringland C, Mant A, McGettigan P, Mitchell P, Kelman C, Buckley N, et al. Uncovering the potential risk of serotonin toxicity in Australian veterans using pharmaceutical claims data. Br J Clin Pharmacol. 2008;66(5):682–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Hernandez AF, Montero MN, Pla A, Villanueva E. Fatal moclobemide overdose or death caused by serotonin syndrome? J Forensic Sci. 1995;40(1):128–30.

    Article  PubMed  CAS  Google Scholar 

  288. Sovner R, Wolfe J. Interaction between dextromethorphan and monoamine oxidase inhibitor therapy with isocarboxazid. N Engl J Med. 1988;319(25):1671.

    Article  PubMed  CAS  Google Scholar 

  289. Rivers N, Horner B. Possible lethal reaction between Nardil and dextromethorphan. CMAJ. 1970;103(1):85.

    CAS  Google Scholar 

  290. Declercq PL, Eraldi JP, Beuzelin M, Gélinotte S, Marchalot A, Bougerol F, et al. Severe serotonin syndrome caused by an interaction between an antidepressant and a cough syrup. Therapie. 2021;76(3):249–52.

    Article  PubMed  Google Scholar 

  291. Härtter S, Dingemanse J, Baier D, Ziegler G, Hiemke C. Inhibition of dextromethorphan metabolism by moclobemide. Psychopharmacology. 1998;135(1):22–6.

    Article  PubMed  Google Scholar 

  292. Harada T, Namera A, Nakao N, Murata K, Katsuya N, Nagao T, et al. A fatal intoxication case due to the serotonin syndrome induced by dextromethorphan and moclobemide overdose. Legal Med. 2025;74:102604.

    Article  PubMed  CAS  Google Scholar 

  293. Kartha SS, Chris CE, Bumpous JM, Fleming M, Lentsch EJ, Flynn MB. Toxic metabolic encephalopathy after parathyroidectomy with methylene blue localization. Otolaryngol Head Neck Surg. 2006;135(5):765–8.

    Article  PubMed  Google Scholar 

  294. Sweet G, Standiford SB. Methylene-blue-associated encephalopathy. J Am Coll Surg. 2007;204(3):454–8.

    Article  PubMed  Google Scholar 

  295. Ure D, Gillies M, James K. Safe use of remifentanil in a patient treated with the monoamine oxidase inhibitor phenelzine. Br J Anaesth. 2000;84(3):414–6.

    Article  PubMed  CAS  Google Scholar 

  296. Codd EE, Shank RP, Schupsky JJ, Raffa RB. Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J Pharmacol Exp Ther. 1995;274(3):1263–70.

    Article  PubMed  CAS  Google Scholar 

  297. Roulet L, Rollason V, Desmeules J, Piguet V. Tapentadol versus tramadol: a narrative and comparative review of their pharmacological, efficacy and safety profiles in adult patients. Drugs. 2021;81(11):1257–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Liu R, Huang X-P, Yeliseev A, Xi J, Roth BL. Novel molecular targets of dezocine and their clinical implications. Anesthesiology. 2014;120(3):714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Gomaa AA, Mohammed LH, Ahmed HN, Farghaly AM. Interaction of butorphanol, with monoamine oxidase inhibitor, tranylcypromine. Forensic Sci Int. 1991;49(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  300. Garbutt JC. Potentiation of propoxyphene by phenelzine. Am J Psychiatry. 1987;144(2):251–2

  301. Zornberg GL, Hegarty JD. Adverse interaction between propoxyphene and phenelzine. Am J Psychiatry. 1993;150:1270–1.

    Article  PubMed  CAS  Google Scholar 

  302. Mendelson G. Narcotics and monoamine oxidase-inhibitors. Med J Aust. 1979;1(9):400–1.

    Article  PubMed  CAS  Google Scholar 

  303. Mastroianni A, Ravaglia G. Serotonin syndrome due to co-administration of linezolid and methadone. Infez Med. 2017;25(3):263–6.

    PubMed  Google Scholar 

  304. Masbough F, Roshanzamiri S, Rahimi M, Sahraei Z, Evini PET. Serotonin syndrome due to concomitant use of linezolid and methadone. Clin Case Rep. 2022;10(11):e6341.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Eastlack SC, Cornett EM, Kaye AD. Kratom—pharmacology, clinical implications, and outlook: a comprehensive review. Pain Ther. 2020;9:55–69.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Eudaley ST, Brooks SP, Hamilton LA. Case report: possible serotonin syndrome in a patient taking kratom and multiple serotonergic agents. J Pharm Pract. 2023;36(6):1523–7.

    Article  PubMed  Google Scholar 

  307. Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RER, Mohamed Z. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules. 2011;16(9):7344–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  308. Brogdon HD, McPhee MM, Paine MF, Cox EJ, Burns AG. A case of potential pharmacokinetic kratom-drug interactions resulting in toxicity and subsequent treatment of kratom use disorder with buprenorphine/naloxone. J Addict Med. 2022;16(5):606–9.

    Article  PubMed  PubMed Central  Google Scholar 

  309. mouse. Slowed down, weighed down: an experience with kratom, tranylcypromine, levothyroxine, clonazepam & lithium (exp106875) Erowid.org2022 [updated Oct 6, 2022]. http://erowid.org/exp/106875.

  310. Zetin M. A clinician’s guide to monoamine oxidase inhibitors. Curr Psychiatry Rev. 2013;9(4):353–64.

    Article  CAS  Google Scholar 

  311. J Ernst B, F Clark G, Grundmann O. The physicochemical and pharmacokinetic relationships of barbiturates—from the past to the future. Curr Pharm Des. 2015;21(25):3681–91.

    Article  Google Scholar 

  312. Löscher W, Rogawski MA. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012;53:12–25.

    Article  PubMed  Google Scholar 

  313. Goldberg LI. Monoamine oxidase inhibitors: adverse reactions and possible mechanisms. JAMA. 1964;190(5):456–62.

    Article  PubMed  CAS  Google Scholar 

  314. Blackwell B. Monoamine oxidase inhibitor interactions with: other drugs. J Clin Psychopharmacol. 1991;11(1):55–8.

    Article  PubMed  CAS  Google Scholar 

  315. Lechat P, Lemeignan M. 25b monoaminoxydase inhibitors and the potentiation of experimental sleep. Biochem Pharmacol. 1961;8(1):8.

    Article  Google Scholar 

  316. Lechat P, Lemeignan M. Inhibition de la monoaminoxydase et potentialisation du sommeil expérimental. Med Exp. 1964;10(1):56–66.

    PubMed  CAS  Google Scholar 

  317. Domino EF, Sullivan TS, Luby ED. Barbiturate intoxication in a patient treated with a MAO inhibitor. Am J Psychiatry. 1962;118(10):941–3.

    Article  PubMed  CAS  Google Scholar 

  318. Roecker R, Lane M. Stupor from dextroamphetamineamobarbital and monoamine oxidase inhibitor, phenelzine. J Med Soc N J. 1961;58:47–9.

    PubMed  CAS  Google Scholar 

  319. Nielsen S. Benzodiazepines. Non-medical and illicit use of psychoactive drugs. Berlin: Springer; 2015. p. 141–59.

    Book  Google Scholar 

  320. Park C, Lukacs L, Mastropaolo J, Deutsch S. Selective effects of MAO inhibition on peripheral benzodiazepine receptor binding in the mouse. Isr J Psychiatry Relat Sci. 1997;34(4):300–7.

    PubMed  CAS  Google Scholar 

  321. Goonewardene A, Toghill P. Gross oedema occurring during treatment for depression. BMJ. 1977;1(6065):879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Pathak S. Gross oedema during treatment for depression. BMJ. 1977;1(6070):1220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Azzaro AJ, Ziemniak J, Kemper E, Campbell BJ, VanDenBerg C. Selegiline transdermal system: an examination of the potential for CYP450-dependent pharmacokinetic interactions with 3 psychotropic medications. J Clin Pharmacol. 2007;47(2):146–58.

    Article  PubMed  CAS  Google Scholar 

  324. Young S, Walpole BG. Tranylcypromine and chlordiazepoxide intoxication. Med J Aust. 1986;144(3):166–7.

    Article  PubMed  CAS  Google Scholar 

  325. Stahl SM. Stahl’s essential psychopharmacology: neuroscientific basis and practical applications. Cambridge: Cambridge University Press; 2021.

    Book  Google Scholar 

  326. Israel JA. Combining stimulants and monoamine oxidase inhibitors: a reexamination of the literature and a report of a new treatment combination. Prim Care Companion CNS Disord. 2015;17(6). https://doi.org/10.4088/PCC.15br01836.

  327. Devabhaktuni RV, Jampala VC. Using street drugs while on MAOI therapy. J Clin Psychopharmacol. 1987;7(1):60.

    Article  PubMed  CAS  Google Scholar 

  328. Sofuoglu M, Poling J, Hill K, Kosten T. Atomoxetine attenuates dextroamphetamine effects in humans. Am J Drug Alcohol Abuse. 2009;35(6):412–6.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem. 1997;68(5):2032–7.

    Article  PubMed  CAS  Google Scholar 

  330. Bradbury A, Costall B, Naylor R, Onaivi E. 5-Hydroxytryptamine involvement in the locomotor activity suppressant effects of amphetamine in the mouse. Psychopharmacology. 1987;93:457–65.

    Article  PubMed  CAS  Google Scholar 

  331. Gillman K. CNS ‘Stimulants’ and MAOIs - Part 2. Psychotropical Research. 2022. Available from: https://www.psychotropical.com/cns-stimulants-and-maois-part-2. Accessed 2025 Dec 30.

  332. Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, et al. In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J Pharmacol Exp Ther. 2003;307(1):138–45.

    Article  PubMed  CAS  Google Scholar 

  333. Kankaanpää A, Meririnne E, Lillsunde P, Seppälä T. The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav. 1998;59(4):1003–9.

    Article  PubMed  Google Scholar 

  334. Schwarz A. Risky rise of the good-grade pill: seeking academic edge, teenagers abuse stimulants. The New York Times. 2012 Jun 10, 2012.

  335. O’Dea K, Rand MJ. Interaction between amphetamine and monoamine oxidase inhibitors. Eur J Pharmacol. 1969;6(2):115–20.

    Article  PubMed  Google Scholar 

  336. Mercuri NB, Scarponi M, Bonci A, Siniscalchi A, Bernardi G. Monoamine oxidase inhibition causes a long-term prolongation of the dopamine-induced responses in rat midbrain dopaminergic cells. J Neurosci. 1997;17(7):2267–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Jensen SB, Olsen AK, Pedersen K, Cumming P. Effect of monoamine oxidase inhibition on amphetamine-evoked changes in dopamine receptor availability in the living pig: a dual tracer PET study with [11C] harmine and [11C] raclopride. Synapse. 2006;59(7):427–34.

    Article  PubMed  CAS  Google Scholar 

  338. Carvalho F, Duarte J, Neuparth M, Carmo H, Fernandes E, Remião F, et al. Hydrogen peroxide production in mouse tissues after acute d-amphetamine administration. Influence of monoamine oxidase inhibition. Arch Toxicol. 2001;75(8):465–9.

    Article  PubMed  CAS  Google Scholar 

  339. Feinberg SS. Combining stimulants with monoamine oxidase inhibitors: a review of uses and one possible additional indication. J Clin Psychiatry. 2004;65(11):1520–4.

    Article  PubMed  CAS  Google Scholar 

  340. Feighner JP, Herbstein J, Damlouji NF. Combined MAOI, TCA, and direct stimulant therapy of treatment-resistant depression. The J Clin Psychiatry. 1985;46(6):206–9.

  341. Fawcett J, Kravitz HM, Zajecka JM, Schaff MR, Freishtat HW. CNS stimulant potentiation of monoamine oxidase: inhibitors in treatment-refractory depression. J Clin Psychopharmacol. 1991;11(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  342. Lloyd JT, Walker DR. Death after combined dexamphetamine and phenelzine. Br Med J. 1965;2(5454):168–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Robinson DS. Monoamine oxidase inhibitors: a new generation. Psychopharmacol Bull. 2002;36(3):124–38.

    Article  PubMed  Google Scholar 

  344. Krisko I, Lewis E, Johnson IIIJE. Severe hyperpyrexia due to tranylcypromine-amphetamine toxicity. Ann Intern Med. 1969;70(3):559–64.

    Article  PubMed  CAS  Google Scholar 

  345. Mason A. Fatal reaction associated with tranylcypromine and methylamphetamine. Lancet. 1962;279(7238):1073.

    Article  Google Scholar 

  346. Zeck P. Dangers of some antidepressant drugs. Med J Aust. 1961;2(15):607–10.

    Article  Google Scholar 

  347. Lewis E. Hyperpyrexia with antidepressant drugs. Br Med J. 1965;1(5451):1671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Maletzky BM. Phenelzine as a stimulant drug antagonist: a preliminary report. Int J Adhes. 1977;12(5):651–65.

    CAS  Google Scholar 

  349. Poleszak E, Szopa A, Wyska E, Wośko S, Serefko A, Wlaź A, et al. The influence of caffeine on the activity of moclobemide, venlafaxine, bupropion and milnacipran in the forced swim test in mice. Life Sci. 2015;136:13–8.

    Article  PubMed  CAS  Google Scholar 

  350. Petzer A, Pienaar A, Petzer JP. The interactions of caffeine with monoamine oxidase. Life Sci. 2013;93(7):283–7.

    Article  PubMed  CAS  Google Scholar 

  351. Herraiz T, Chaparro C. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee. Life Sci. 2006;78(8):795–802.

    Article  PubMed  CAS  Google Scholar 

  352. Grzelczyk J, Budryn G, Peña-García J, Szwajgier D, Gałązka-Czarnecka I, Oracz J, et al. Evaluation of the inhibition of monoamine oxidase A by bioactive coffee compounds protecting serotonin degradation. Food Chem. 2021;348:129108.

    Article  PubMed  CAS  Google Scholar 

  353. Nehlig A, Daval J-L, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev. 1992;17(2):139–70.

    Article  PubMed  CAS  Google Scholar 

  354. Juorio AV. The effect of caffeine on mouse striatal tryptamine. Eur J Pharmacol. 1985;119(3):235–7.

    Article  PubMed  CAS  Google Scholar 

  355. Kitatani T, Watanabe Y, Shibuya T. Different effects of methylxanthines on central serotonergic postsynaptic neurons in a mouse behavioral model. Pharmacol Biochem Behav. 1993;44(2):457–61.

    Article  PubMed  CAS  Google Scholar 

  356. Faro LR, Justo LA, Alfonso M, Durán R. Possible synergies between isatin, an endogenous MAO inhibitor, and antiparkinsonian agents on the dopamine release from striatum of freely moving rats. Neuropharmacology. 2020;171:108083.

    Article  PubMed  CAS  Google Scholar 

  357. Kline NS. Psychopharmaceuticals: effects and side effects. Bull World Health Organ. 1959;21(4–5):397.

    PubMed  PubMed Central  CAS  Google Scholar 

  358. Dawson JK, Earnshaw SM, Graham CS. Dangerous monoamine oxidase inhibitor interactions are still occurring in the 1990s. J Accid Emerg Med. 1995;12(1):49–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. van der Hoeven N, Visser I, Schene A, van den Born B-J. Severe hypertension related to caffeinated coffee and tranylcypromine: a case report. Ann Intern Med. 2014;160(9):657–8.

    Article  PubMed  Google Scholar 

  360. Roque Bravo R, Faria AC, Brito-da-Costa AM, Carmo H, Mladěnka P, da Dias Silva D, et al. Cocaine: an updated overview on chemistry, detection, biokinetics, and pharmacotoxicological aspects including abuse pattern. Toxins. 2022;14(4):278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Pepper J-P, Baumann MH, Ayestas M, Rothman RB. Inhibition of MAO-A fails to alter cocaine-induced increases in extracellular dopamine and norepinephrine in rat nucleus accumbens. Mol Brain Res. 2001;87(2):184–9.

    Article  PubMed  CAS  Google Scholar 

  362. Haberny KA, Walsh SL, Ginn DH, Wilkins JN, Garner JE, Setoda D, et al. Absence of acute cocaine interactions with the MAO-B inhibitor selegiline. Drug Alcohol Depend. 1995;39(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  363. Bartzokis G, Beckson M, Newton T, Mandelkern M, Mintz J, Foster JA, et al. Selegiline effects on cocaine-induced changes in medial temporal lobe metabolism and subjective ratings of euphoria. Neuropsychopharmacology. 1999;20(6):582–90.

    Article  PubMed  CAS  Google Scholar 

  364. Houtsmuller EJ, Newton T, Van Sluis N, Chiang N, Elkashef A, Bigelow GE. Transdermal selegiline and intravenous cocaine: safety and interactions. Psychopharmacology. 2004;172:31–40.

    Article  PubMed  CAS  Google Scholar 

  365. Newton TF, Kalechstein A, Beckson M, Bartzokis G, Bridge TP, Ling W. Effects of selegiline pretreatment on response to experimental cocaine administration. Psychiatr Res. 1999;87(2–3):101–6.

    Article  CAS  Google Scholar 

  366. Harris DS, Everhart T, Jacob P, Lin E, Mendelson JE, Jones RT. A phase 1 trial of pharmacologic interactions between transdermal selegiline and a 4-hour cocaine infusion. BMC Clin Pharmacol. 2009;9:1–18.

    Article  Google Scholar 

  367. Brewer C. Treatment of cocaine abuse with monoamine oxidase inhibitors. Br J Psychiatry. 1993;163(6):815–6.

    Article  PubMed  CAS  Google Scholar 

  368. Resnick ER. Psychological issues in the treatment of cocaine abuse. NIDA Res Monogr. 1986;67:290–4.

    PubMed  CAS  Google Scholar 

  369. Elkashef A, Fudala PJ, Gorgon L, Li S-H, Kahn R, Chiang N, et al. Double-blind, placebo-controlled trial of selegiline transdermal system (STS) for the treatment of cocaine dependence. Drug Alcohol Depend. 2006;85(3):191–7.

    Article  PubMed  CAS  Google Scholar 

  370. Golwyn DH. Cocaine abuse treated with phenelzine. Int J Adhes. 1988;23(9):897–905.

    CAS  Google Scholar 

  371. Tordoff S, Stubbing J, Linter S. Delayed excitatory reaction following interaction of cocaine and monoamine oxidase inhibitor (phenelzine). Br J Anaesth. 1991;66(4):516–8.

    Article  PubMed  CAS  Google Scholar 

  372. Kłys M, Kowalski P, Rojek S, Gross A. Death of a female cocaine user due to the serotonin syndrome following moclobemide-venlafaxine overdose. Forensic Sci Int. 2009;184(1–3):e16-20.

    Article  PubMed  Google Scholar 

  373. Liu Y, Cheong J, Vaddiparti K, Cottler LB. The association between quantity, frequency and duration of cocaine use during the heaviest use period and DSM-5 cocaine use disorder. Drug Alcohol Depend. 2020;213:108114.

    Article  PubMed  Google Scholar 

  374. Wabe NT. Chemistry, pharmacology, and toxicology of khat (Catha edulis Forsk): a review. Addict Health. 2011;3(3–4):137.

    PubMed  PubMed Central  Google Scholar 

  375. Kalix P. Effect of the alkaloid (–)-cathinone on the release of radioactivity from rat striatal tissue prelabelled with 3H-serotonin. Neuropsychobiology. 1984;12(2–3):127–9.

    Article  PubMed  CAS  Google Scholar 

  376. Aklillu E, Engidawork E. The impact of Catha edulis (Vahl) Forssk. ex Endl. (Celestraceae)(khat) on pharmacokinetics of clinically used drugs. Expert Opin Drug Metab Toxicol. 2021;17(9):1125–38.

    Article  PubMed  CAS  Google Scholar 

  377. Tuladhar AM, Boogaarts HD, de Leeuw FE, van Dijk E. Reversible cerebral vasoconstriction syndrome after chewing khat leaves. Cerebrovasc Dis. 2013;36(2):158–9.

    Article  PubMed  Google Scholar 

  378. der Van Heide D, Merckelbach H, van Harten P. Tranylcypromine and khat: a potentially fatal combination. Tijdschr Psychiatr. 2018;60(8):544–7.

    Google Scholar 

  379. Tyrkkö E, Andersson M, Kronstrand R. The toxicology of new psychoactive substances: synthetic cathinones and phenylethylamines. Ther Drug Monit. 2016;38(2):190–216.

    Article  PubMed  Google Scholar 

  380. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, et al. Amphetamine‐type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39(1):32–41.

    Article  PubMed  CAS  Google Scholar 

  381. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009;104(7):1085–99.

    Article  PubMed  Google Scholar 

  382. Egashira T, Yamamoto T, Yamanaka Y. Effects of d-methamphetamine on monkey brain monoamine oxidase, in vivo and in vitro. Jpn J Pharmacol. 1987;45(1):79–88.

    Article  PubMed  CAS  Google Scholar 

  383. Kitanaka J, Kitanaka N, Takemura M. Modification of monoaminergic activity by MAO inhibitors influences methamphetamine actions. Drug Target Insights. 2006;1:117739280600100001.

    Article  Google Scholar 

  384. Schindler CW, Gilman JP, Graczyk Z, Wang G, Gee WL. Reduced cardiovascular effects of methamphetamine following treatment with selegiline. Drug Alcohol Depend. 2003;72(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  385. Wagner GC, Walsh SL. Evaluation of the effects of inhibition of monoamine oxidase and senescence on methamphetamine-induced neuronal damage. Int J Dev Neurosci. 1991;9(2):171–4.

    Article  PubMed  CAS  Google Scholar 

  386. Newton TF, De La Garza IIR, Fong T, Chiang N, Holmes TH, Bloch DA, et al. A comprehensive assessment of the safety of intravenous methamphetamine administration during treatment with selegiline. Pharmacol Biochem Behav. 2005;82(4):704–11.

    Article  PubMed  CAS  Google Scholar 

  387. Dally PJ. Fatal reaction associated with tranylcypromine and methylamphetamine. Lancet. 1962;279(7241):1235–6.

    Article  Google Scholar 

  388. Luethi D, Kaeser PJ, Brandt SD, Krähenbühl S, Hoener MC, Liechti ME. Pharmacological profile of methylphenidate-based designer drugs. Neuropharmacology. 2018;134:133–40.

    Article  PubMed  CAS  Google Scholar 

  389. Breese GR, Cooper BR, Hollister AS. Involvement of brain monoamines in the stimulant and paradoxical inhibitory effects of methylphenidate. Psychopharmacologia. 1975;44(1):5–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  390. Gatley SJ, Ding Y-S, Volkow ND, Chen R, Sugano Y, Fowler JS. Binding of d-threo-[11C] methylphenidate to the dopamine transporter in vivo: insensitivity to synaptic dopamine. Eur J Pharmacol. 1995;281(2):141–9.

    Article  PubMed  CAS  Google Scholar 

  391. Thomas SJ, Shin M, McInnis MG, Bostwick JR. Combination therapy with monoamine oxidase inhibitors and other antidepressants or stimulants: strategies for the management of treatment-resistant depression. Pharmacotherapy. 2015;35(4):433–49.

    Article  PubMed  CAS  Google Scholar 

  392. Shelton Clauson A, Elliott ES, Watson BD, Treacy J. Coadministration of phenelzine and methylphenidate for treatment-resistant depression. Ann Pharmacother. 2004;38(3):508.

    Article  PubMed  Google Scholar 

  393. Myronuk LD, Weiss M, Cotter L. Combined treatment with moclobemide and methylphenidate for comorbid major depression and adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 1996;16(6):468–9.

    Article  PubMed  CAS  Google Scholar 

  394. Prakash S, Rathore C, Rana K, Prakash A. Fatal serotonin syndrome: a systematic review of 56 cases in the literature. Clin Toxicol Phila. 2021;59(2):89–100.

    Article  PubMed  Google Scholar 

  395. Benowitz NL. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther. 2008;83(4):531–41.

    Article  PubMed  CAS  Google Scholar 

  396. Hong SW, Teesdale-Spittle P, Page R, Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology. 2022;93:163–72.

    Article  PubMed  CAS  Google Scholar 

  397. Siu EC, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther. 2008;324(3):992–9.

    Article  PubMed  CAS  Google Scholar 

  398. Zhang W, Kilicarslan T, Tyndale RF, Sellers EM. Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos. 2001;29(6):897–902.

    PubMed  CAS  Google Scholar 

  399. Moheimani RS, Bhetraratana M, Peters KM, Yang BK, Yin F, Gornbein J, et al. Sympathomimetic effects of acute e‐cigarette use: role of nicotine and non‐nicotine constituents. J Am Heart Assoc. 2017;6(9):e006579.

    Article  PubMed  PubMed Central  Google Scholar 

  400. Malin D, Moon W, Goyarzu P, Barclay E, Magallanes N, Vela A, et al. Inhibition of monoamine oxidase isoforms modulates nicotine withdrawal syndrome in the rat. Life Sci. 2013;93(12–14):448–53.

    Article  PubMed  CAS  Google Scholar 

  401. Berlin I, Saïd S, Spreux‐Varoquaux O, Launay JM, Olivares R, Millet V, et al. A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther. 1995;58(4):444–52.

    Article  PubMed  CAS  Google Scholar 

  402. Houtsmuller EJ, Thornton JA, Stitzer ML. Effects of selegiline (L-deprenyl) during smoking and short-term abstinence. Psychopharmacology. 2002;163:213–20.

    Article  PubMed  CAS  Google Scholar 

  403. George TP, Vessicchio JC, Termine A, Jatlow PI, Kosten TR, O’Malley SS. A preliminary placebo-controlled trial of selegiline hydrochloride for smoking cessation. Biol Psychiatry. 2003;53(2):136–43.

    Article  PubMed  CAS  Google Scholar 

  404. Biberman R, Neumann R, Katzir I, Gerber Y. A randomized controlled trial of oral selegiline plus nicotine skin patch compared with placebo plus nicotine skin patch for smoking cessation. Addiction. 2003;98(10):1403–7.

  405. Killen JD, Fortmann SP, Murphy GM Jr, Hayward C, Fong D, Lowenthal K, et al. Failure to improve cigarette smoking abstinence with transdermal selegiline+ cognitive behavior therapy. Addiction. 2010;105(9):1660–8.

    Article  PubMed  PubMed Central  Google Scholar 

  406. Weinberger AH, Reutenauer EL, Jatlow PI, O’Malley SS, Potenza MN, George TP. A double-blind, placebo-controlled, randomized clinical trial of oral selegiline hydrochloride for smoking cessation in nicotine-dependent cigarette smokers. Drug Alcohol Depend. 2010;107(2–3):188–95.

    Article  PubMed  CAS  Google Scholar 

  407. Kahn R, Gorgon L, Jones K, McSherry F, Glover ED, Anthenelli RM, et al. Selegiline transdermal system (STS) as an aid for smoking cessation. Nicotine Tob Res. 2012;14(3):377–82.

    Article  PubMed  CAS  Google Scholar 

  408. Berlin I, Hunneyball IM, Greiling D, Jones SP, Fuder H, Stahl H-D. A selective reversible monoamine oxidase B inhibitor in smoking cessation: effects on its own and in association with transdermal nicotine patch. Psychopharmacology. 2012;223:89–98.

    Article  PubMed  CAS  Google Scholar 

  409. Cohen C, Curet O, Perrault G, Sanger DJ. Reduction of oral ethanol self-administration in rats by monoamine oxidase inhibitors. Pharmacol Biochem Behav. 1999;64(3):535–9.

    Article  PubMed  CAS  Google Scholar 

  410. Sanders B, Collins AC, Petersen DR, Fish BS. Effects of three monoamine oxidase inhibitors on ethanol preference in mice. Pharmacol Biochem Behav. 1977;6(3):319–24.

    Article  PubMed  CAS  Google Scholar 

  411. Ramsay R, Bahrey M, Robinson B. Effect of an antidepressant drug on clinic attendance of alcoholics. Q J Stud Alcohol. 1964;25(3):544–6.

    Article  PubMed  CAS  Google Scholar 

  412. Schottenfeld RS, O’Malley SS, Smith L, Rounsaville BJ, Jaffe JH. Clinical note: limitation and potential hazards of MAOI’s for the treatment of depressive symptoms in abstinent alcoholics. Am J Drug Alcohol Abuse. 1989;15(3):339–44.

    Article  PubMed  CAS  Google Scholar 

  413. Versiani M, Mundim FD, Nardi AE, Liebowitz MR. Tranylcypromine in social phobia. J Clin Psychopharmacol. 1988;8(4):279–82.

    Article  PubMed  CAS  Google Scholar 

  414. Maxwell RA, Eckhardt SB. Iproniazid. Drug discovery: a casebook and analysis. Berlin: Springer; 1990. p. 143–54.

  415. Grasing K, He S. Effects of high-dose selegiline on morphine reinforcement and precipitated withdrawal in dependent rats. Behav Pharmacol. 2005;16(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  416. Grasing K, He S, Li N. Selegiline modifies the extinction of responding following morphine self-administration, but does not alter cue-induced reinstatement, reacquisition of morphine reinforcement, or precipitated withdrawal. Pharmacol Res. 2005;51(1):69–78.

    Article  PubMed  CAS  Google Scholar 

  417. Vaiva G, De Lenclave MBDC, Bailly D. Treatment of comorbid opiate addiction and attention-deficit hyperactivity disorder (residual type) with moclobemide: a case report. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(3):609–11.

    Article  PubMed  Google Scholar 

  418. Kitanaka N, Kitanaka J, Takemura M. Inhibition of methamphetamine-induced hyperlocomotion in mice by clorgyline, a monoamine oxidase-a inhibitor, through alteration of the 5-hydroxytriptamine turnover in the striatum. Neuroscience. 2005;130(2):295–308.

    Article  PubMed  CAS  Google Scholar 

  419. Tatsuta T, Kitanaka N, Kitanaka J, Morita Y, Takemura M. Effects of monoamine oxidase inhibitors on methamphetamine-induced stereotypy in mice and rats. Neurochem Res. 2005;30(11):1377–85.

    Article  PubMed  CAS  Google Scholar 

  420. Winger GD, Yasar S, Negus SS, Goldberg SR. Intravenous self‐administration studies with l‐deprenyl (selegiline) in monkeys. Clin Pharmacol Ther. 1994;56:774–80.

    Article  PubMed  CAS  Google Scholar 

  421. Gatch MB, Taylor CM, Flores E, Selvig M, Forster MJ. Effects of monoamine oxidase inhibitors on cocaine discrimination in rats. Behav Pharmacol. 2006;17(2):151–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  422. Azzaro AJ, Ziemniak J, Kemper E, Campbell BJ, VanDenBerg C. Pharmacokinetics and absolute bioavailability of selegiline following treatment of healthy subjects with the selegiline transdermal system (6 mg/24 h): a comparison with oral selegiline capsules. J Clin Pharmacol. 2007;47(10):1256–67.

    Article  PubMed  CAS  Google Scholar 

  423. Villégier A-S, Lotfipour S, McQuown SC, Belluzzi JD, Leslie FM. Tranylcypromine enhancement of nicotine self-administration. Neuropharmacology. 2007;52(6):1415–25.

    Article  PubMed  Google Scholar 

  424. Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, et al. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci. 2005;25(38):8593–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  425. Villégier A-S, Salomon L, Granon S, Changeux J-P, Belluzzi JD, Leslie FM, et al. Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology. 2006;31(8):1704–13.

    Article  PubMed  Google Scholar 

  426. Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, et al. Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur J Neurosci. 2006;24(12):3532–40.

    Article  PubMed  Google Scholar 

  427. Smith TT, Rupprecht LE, Cwalina SN, Onimus MJ, Murphy SE, Donny EC, et al. Effects of monoamine oxidase inhibition on the reinforcing properties of low-dose nicotine. Neuropsychopharmacology. 2016;41(9):2335–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  428. Villégier A-S, Blanc G, Glowinski J, Tassin J-P. Transient behavioral sensitization to nicotine becomes long-lasting with monoamine oxidases inhibitors. Pharmacol Biochem Behav. 2003;76(2):267–74.

    Article  PubMed  Google Scholar 

  429. Wooters TE, Bardo MT. The monoamine oxidase inhibitor phenelzine enhances the discriminative stimulus effect of nicotine in rats. Behav Pharmacol. 2007;18(7):601–8.

    Article  PubMed  CAS  Google Scholar 

  430. Deng X, Shang X, Guo K, Zhou L, Wang Y, Wu Y, et al. Efficacy and safety of antidepressants for smoking cessation: a systematic review and network meta‐analysis. Addict Biol. 2023;28(8):e13303.

    Article  PubMed  Google Scholar 

  431. De La Torre R, Farré M, Navarro M, Pacifici R, Zuccaro P, Pichini S. Clinical pharmacokinetics of amfetamine and related substances: monitoring in conventional and non-conventional matrices. Clin Pharmacokinet. 2004;43(3):157–85.

    Article  PubMed  CAS  Google Scholar 

  432. Lile JA, Babalonis S, Emurian C, Martin CA, Wermeling DP, Kelly TH. Comparison of the behavioral and cardiovascular effects of intranasal and oral d‐amphetamine in healthy human subjects. J Clin Pharmacol. 2011;51(6):888–98.

    Article  PubMed  CAS  Google Scholar 

  433. Miller MA, Fillmore MT. Protracted impairment of impulse control under an acute dose of alcohol: a time-course analysis. Addict Behav. 2014;39(11):1589–96.

    Article  PubMed  Google Scholar 

  434. Hilton SE, Maradit H, Möller HJ. Serotonin syndrome and drug combinations: focus on MAOI and RIMA. Eur Arch Psychiatry Clin Neurosci. 1997;247(3):113–9.

    Article  PubMed  CAS  Google Scholar 

  435. Simpson GM, Gratz SS. Comparison of the pressor effect of tyramine after treatment with phenelzine and moclobemide in healthy male volunteers. Clin Pharmacol Ther. 1992;52(3):286–91.

    Article  PubMed  CAS  Google Scholar 

  436. Warrington SJ, Turner P, Mant TG, Morrison P, Haywood G, Glover V, et al. Clinical pharmacology of moclobemide, a new reversible monoamine oxidase inhibitor. J Psychopharmacol. 1991;5(1):82–91.

    Article  PubMed  CAS  Google Scholar 

  437. Fowler JS, Logan J, Azzaro AJ, Fielding RM, Zhu W, Poshusta AK, et al. Reversible inhibitors of monoamine oxidase-A (RIMAs): robust, reversible inhibition of human brain MAO-A by CX157. Neuropsychopharmacology. 2010;35(3):623–31.

    Article  PubMed  CAS  Google Scholar 

  438. Haefely W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR, et al. Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacology. 1992;106(Suppl):S6-14.

    Article  PubMed  CAS  Google Scholar 

  439. Izumi T, Iwamoto N, Kitaichi Y, Kato A, Inoue T, Koyama T. Effects of co-administration of antidepressants and monoamine oxidase inhibitors on 5-HT-related behavior in rats. Eur J Pharmacol. 2007;565(1–3):105–12.

    Article  PubMed  CAS  Google Scholar 

  440. Finberg JP, Gillman K. Selective inhibitors of monoamine oxidase type B and the “cheese effect.” Int Rev Neurobiol. 2011;100:169–90.

    Article  PubMed  CAS  Google Scholar 

  441. Davidson J. Seizures and bupropion: a review. J Clin Psychiatry. 1989;50(7):256–61.

    PubMed  CAS  Google Scholar 

  442. Johnston JA, Lineberry CG, Ascher JA, Davidson J, Khayrallah M, Feighner J, et al. A 102-center prospective study of seizure in association with bupropion. J Clin Psychiatry. 1991;52(11):450–6.

    PubMed  CAS  Google Scholar 

  443. García-Campayo JJ, Sanz-Carrillo C, Ferrández Payo M. Abuse of the monoamine oxidase (MAOI) inhibitors as antidepressive drugs: a critical review. Actas Luso Esp Neurol Psiquiatr Cienc Afines. 1995;23(4):217–22.

    PubMed  Google Scholar 

  444. Haddad P. Do antidepressants have any potential to cause addiction? J Psychopharmacol. 1999;13(3):300–7.

    Article  PubMed  CAS  Google Scholar 

  445. Davids E, Röschke J, Klawe C, Gründer G, Schmoldt A. Tranylcypromine abuse associated with delirium and thrombocytopenia. J Clin Psychopharmacol. 2000;20(2):270–1.

    Article  PubMed  CAS  Google Scholar 

  446. Shaikh W, Fuls K. Tranylcypromine dependence and withdrawal. Aust N Z J Psychiatry. 2009;43(6):580–1.

    PubMed  Google Scholar 

  447. Eyer F, Jetzinger E, Pfab R, Zilker T. Withdrawal from high-dose tranylcypromine. Clin Toxicol. 2008;46(3):261–3.

    Article  CAS  Google Scholar 

  448. Ulrich S, Ricken R, Adli M. Tranylcypromine in mind (Part I): review of pharmacology. Eur Neuropsychopharmacol. 2017;27(8):697–713.

    Article  PubMed  CAS  Google Scholar 

  449. Akhgari M, Jokar F, Etemadi-Aleagha A, Ghasemi A. Discrimination between drug abuse and medical therapy: case report of a tranylcypromine overdose-related fatality. Sultan Qaboos Univ Med J. 2017;17(2):e213.

    Article  PubMed  PubMed Central  Google Scholar 

  450. Crifasi J, Long C. The GCMS analysis of tranylcypromine (Parnate) in a suspected overdose. Forensic Sci Int. 1997;86(1–2):103–8.

    Article  PubMed  CAS  Google Scholar 

  451. Youdim M, Aronson J, Blau K, Green A, Grahame-Smith D. Tranylcypromine (‘Parnate’) overdose: measurement of tranylcypromine concentrations and MAO inhibitory activity and identification of amphetamines in plasma. Psychol Med. 1979;9(2):377–82.

    Article  PubMed  CAS  Google Scholar 

  452. Sherry R, Rauw G, McKenna K, Paetsch P, Coutts R, Baker G. Failure to detect amphetamine or 1-amino-3-phenlypropane in humans or rats receiving the MAO inhibitor tranylcypromine. J Affect Disord. 2000;61(1–2):23–9.

    Article  PubMed  CAS  Google Scholar 

  453. Yasar S, Goldberg J, Goldberg S. Are metabolites of l-deprenyl (selegiline) useful or harmful? Indications from preclinical research. Deprenyl—past and future. J Neural Transm Suppl. 1996;48:61–73.

    PubMed  CAS  Google Scholar 

  454. Magyar K. The pharmacology of selegiline. Int Rev Neurobiol. 2011;100:65–84.

    Article  PubMed  CAS  Google Scholar 

  455. Heinonen EH, Anttila MI, Karnani HL, Nyman LM, Vuorinen JA, Pyykkö KA, et al. Desmethylselegiline, a metabolite of selegiline, is an irreversible inhibitor of monoamine oxidase type B in humans. J Clin Pharmacol. 1997;37(7):602–9.

    Article  PubMed  CAS  Google Scholar 

  456. Nickel B, Szelenyi I, Schulze G. Evaluation of physical dependence liability of l‐deprenyl (selegiline) in animals. Clin Pharmacol Ther. 1994;56:757–67.

    Article  PubMed  CAS  Google Scholar 

  457. Schneider LS, Tariot PN, Goldstein B. Therapy with l‐deprenyl (selegiline) and relation to abuse liability. Clin Pharmacol Ther. 1994;56:750–6.

    Article  PubMed  CAS  Google Scholar 

  458. r/Nootropics. Selegiline is by far the best nootropic, and it is completely legal and available over the counter. Reddit2024. https://www.reddit.com/r/Nootropics/comments/1bph181/selegiline_is_by_far_the_best_nootropic_and_it_is/.

  459. Antosik-Wójcińska AZ, Bzinkowska D, Chojnacka M, Swiecicki Ł, Torbiński J. “Addiction” to phenelzine-case report. Psychiatr Pol. 2013;47(1):127–34.

    PubMed  Google Scholar 

  460. Baumbacher G, Hansen MS. Abuse of monoamine oxidase inhibitors. Am J Drug Alcohol Abuse. 1992;18(4):399–406.

    Article  PubMed  CAS  Google Scholar 

  461. Shopsin B, Kline NS. Monoamine oxidase inhibitors: potential for drug abuse. Biol Psychiatry. 1976;11(4):451–6.

    PubMed  CAS  Google Scholar 

  462. Brady KT, Lydiard RB, Kellner C. Tranylcypromine abuse. Am J Psychiatry. 1991;148:1268–9.

    Article  PubMed  CAS  Google Scholar 

  463. Shulman KI, Walker SE, MacKenzie S, Knowles S. Dietary restriction, tyramine, and the use of monoamine oxidase inhibitors. J Clin Psychopharmacol. 1989;9(6):397–402.

    Article  PubMed  CAS  Google Scholar 

  464. Barker SA, Monti JA, Christian ST. N,N-dimethyltryptamine: an endogenous hallucinogen. Int Rev Neurobiol. 1981;22:83–110.

    Article  PubMed  CAS  Google Scholar 

  465. Ona G, Rocha JM, Bouso JC, Hallak JE, Borras T, Colomina MT, et al. The adverse events of ibogaine in humans: an updated systematic review of the literature (2015–2020). Psychopharmacology. 2022;239(6):1977–87.

    Article  PubMed  CAS  Google Scholar 

  466. Lee TS, Liu YH, Huang YJ, Tang WK, Wang Y, Hu S, et al. Clinical and behavior characteristics of individuals who used ketamine. Sci Rep. 2022;12(1):801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  467. Hori T, Abe S, Baba A, Suzuki T, Shiraishi H. Effects of repeated phencyclidine treatment on serotonin transporter in rat brain. Neurosci Lett. 2000;280(1):53–6.

    Article  PubMed  CAS  Google Scholar 

  468. Hori T, Suzuki T, Baba A, Abe S, Yamamoto T, Moroji T, et al. Effects of phencyclidine metabolites on serotonin uptake in rat brain. Neurosci Lett. 1996;209(3):153–6.

    Article  PubMed  CAS  Google Scholar 

  469. Bailey DN. Phencyclidine abuse: clinical findings and concentrations in biological fluids after nonfatal intoxication. Am J Clin Pathol. 1979;72(5):795–9.

    Article  PubMed  CAS  Google Scholar 

  470. Park SH, Wackernah RC, Stimmel GL. Serotonin syndrome: is it a reason to avoid the use of tramadol with antidepressants? J Pharm Pract. 2014;27(1):71–8.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript or to conduct the study/analysis described.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Rached.

Ethics declarations

Conflicts of interest

B.S. Barnett holds stock in Atai Life Sciences N.V. and CB Therapeutics (options). He has served as an advisor for AbbVie, Cerebral, CB Therapeutics, Compass Pathways, GH Research, Janssen Pharmaceuticals, Livanova, and MindMed. He receives monetary compensation from DynaMed Plus (EBSCO Industries, Inc.) for editorial work and speaker’s fees from TD Cowen. Dr Barnett receives research support from Abbott Laboratories, Compass Pathways, MindMed, and Reunion Neuroscience. V. Van den Eynde has received consulting fees from PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH, and a speaker’s fee from the Flemish Psychiatric Association (donated to a charitable trust for monoamine oxidase inhibitor [MAOI] research). He has acquired a grant from Neon Healthcare for PsychoTropical Research and for the International MAOI Expert Group, and has stock options in NeuraWell Therapeutics. P.K. Gillman has equity interests in, and serves on the advisory board of, NeuraWell Therapeutics, the company holding the patent for a modified form of tranylcypromine. He has received a speaker’s fee from the Flemish Psychiatric Association (donated to a charitable trust for MAOI research). The other authors declare no potential conflicts of interest.

Availability of Data and Material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Author Contributions

B.S. Barnett conceptualized the study and provided critical revisions. G. Rached drafted the manuscript and conducted the literature review. A. Campana, D. Fiani, and C. Nguyen contributed to data extraction and synthesis. V. Van den Eynde and P.K. Gillman provided expert review of the pharmacological and safety content. All authors read and approved the final manuscript and agree to be accountable for all aspects of the work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rached, G., Campana, A., Fiani, D. et al. Safety and Efficacy of Monoamine Oxidase Inhibitors in Patients Who Use Psychoactive Substances: Potential Drug Interactions and Substance Use Disorder Treatment Data. CNS Drugs 40, 359–417 (2026). https://doi.org/10.1007/s40263-025-01256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s40263-025-01256-7

Profiles

  1. Gaëlle Rached
  2. Vincent Van den Eynde